A-Priori Estimates for a Semi-Lagrangian Scheme for the Wave Equation

  • M. Falcone
  • R. Ferretti


We present some a-priori estimates for a class of semi-Lagran-gian approximation schemes for the wave equation. The wave equation is written in the form of a hyperbolic system of the first order and the approximation is based on this representation. The algorithm can work on structured and unstructured grids.


Wave Equation Cauchy Problem Approximation Scheme Hyperbolic System Unstructured Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Crandall M.G., Ishii H. and Lions P.L. (1992). User’s guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 , pp.1–67.MathSciNetMATHCrossRefGoogle Scholar
  2. Falcone M. and Ferretti R. (1994). Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67, pp. 315–344.MathSciNetMATHCrossRefGoogle Scholar
  3. Falcone M. and Ferretti R. (1998). Convergence analysis for a class of semi-lagrangian advecion schemes. SIAM J. Num. Anal. 35, pp. 909–940.MathSciNetMATHCrossRefGoogle Scholar
  4. Falcone M. and Ferretti R. (2000). Analysis of a class of semi-Lagrangian schemes for the wave equation. In preparation.Google Scholar
  5. Harten A., Osher S., Engquist B. and Chakravarthy S. (1986). Some results on uniformly high-order accurate essentially non-oscillatory schemes. Appl. Nurner. Math. 2, pp. 347–377.MathSciNetMATHGoogle Scholar
  6. Hoar R.H. and Vogel C.R. (1995). An adaptive stencil finite differencing scheme for linear first order hyperbolic systems - a preliminary report. Computation and control, IV (Bozeman, MT, 1994), 169–183, Progr. Systems Control Theory, 20, Birkhäuser Boston, Boston, MA, 1995.Google Scholar
  7. Barles G. (1994). Solutions de viscosité des equations de Hamilton-Jacobi. Springer-Verlag, Paris.MATHGoogle Scholar
  8. Quarteroni A. and Valli A. (1994). Numerical approximation of partial differential equations. Springer-Verlag.MATHGoogle Scholar
  9. Whitham .B. (1974). Linear and non linear waves. Wiley-Interscience, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • M. Falcone
    • 1
  • R. Ferretti
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma ”La Sapienza”RomaItaly
  2. 2.Dipartimento di MatematicaUniversità di Roma ”Tor Vergata”, Via della Ricerca ScientificaRomaItaly

Personalised recommendations