The Protective Properties of Milk and Colostrum in Non-Human Species

  • Ian Tizard
Chapter
Part of the Advances in Nutritional Research book series (ANUR, volume 10)

Abstract

Newborn mammals emerge from the clean, stable and sterile uterus into a world where they are immediately exposed to an enormous variety of microorganisms. If they are to survive, newborns therefore must be able to control microbial invasion. The immune system, however, may not be ready for this defensive role. In mammals with a short gestation period such as the marsupials, the immune system may not have developed fully. In mammals with a long gestation period such as the domestic herbivores, although the immune system is structurally complete at birth, it cannot function fully for several weeks. The complete development of immune capability depends on antigenic stimulation. The development of adequate numbers of antigen-sensitive lymphocytes depends on clonal selection and antigen-driven cell multiplication. The first immune responses mounted by a newborn animal must be primary responses with a prolonged lag period and low concentrations of antibodies produced. Thus newborn mammals are highly vulnerable to microbial invasion for the first few weeks of life and unless immunological assistance is provided, they may be killed by microorganisms that present little threat to an adult. This “immunological assistance” is provided by antibodies and other proteins transferred from the mother to her offspring through the placenta and/or by antibodies and lymphocytes transferred through colostrum and milk.

Keywords

Lactate Leukemia Influenza Diarrhea Proteinuria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abimiku, A.G. and Dolby, J.M. 1987. The mechanism of protection of infant mice from intestinal colonization withCampylobacter jejuni. J. Med. Micro.23:339–344.CrossRefGoogle Scholar
  2. Ahouse, J.J., Hagerman, C.L., Mittal, E, Gilbert, D.J., Copeland, N.G., Jenkins, N.A., and Simister, N.E. 1993. Mouse MHC class I-like Fc receptor encoded outside the MHC. J.Immunol.151:6076.Google Scholar
  3. Altmann, K. and Mukkur, T.K. 1983. Passive immunisation of neonatal lambs against infection with enteropathogenicEscherichia colivia colostrum of ewes immunised with crude and purified K99 pili.Res. Vet. Sci.35:234.Google Scholar
  4. Anderson, C.C. and Sinclair, N.R. 1998. FcR-mediated inhibition of cell activation and other forms of coinhibition.Crit. Rev. Immunol.18:525.CrossRefGoogle Scholar
  5. Appleby, P. and Catty, D. 1983. Transmission of immunoglobulin to foetal and neonatal mice.J. Repro. Immunol.5:203.CrossRefGoogle Scholar
  6. Archambault, D., Morin, G., and Elazhary, M. 1988a. Isolation of bovine colostral lymphocytes: in vitro blastogenic responsiveness to concanavalin A and bovine rotavirus.Ann. Res. Vet.19:169.Google Scholar
  7. Archambault, D., Morin, G., Elazhary, Y., Roy, R.S., and Joncas, J.H. 1988b. Immune response of pregnant heifers and cows to bovine rotavirus inoculation and passive protection to rotavirus infection in newborn calves fed colostral antibodies or colostral lymphocytes.Am. J Vet. Res.49:1084.Google Scholar
  8. Azwai, S.M., Carter, S.D., and Woldehiwet, Z. 1996. Immunoglobulins of camel(Camelus dromedarius)colostrum.J. Comp. Path114:273.CrossRefGoogle Scholar
  9. Balfour, W.E. and Comline, R.S. 1962. Acceleration of the absorption of unchanged globulins in the newborn calf by factors in colostrum.J. Physiol.160:234.Google Scholar
  10. Barrington, G.M., Besser, T.E., Davis, W.C., Gay, C.C., Reeves, J.J., and McFadden, T.B. 1997. Expression of immunoglobulin G1 receptors by bovine mammary epithelial cells and mammary leukocytes.J. Dairy Sci.80:86.CrossRefGoogle Scholar
  11. Barthold, S.W., Beck, D.S., and Smith, A.L. 1988. Mouse hepatitis virus and host determinants of vertical transmission and maternally-derived passive immunity in mice.Arch. Virol.100:171.CrossRefGoogle Scholar
  12. Beer, A.E. and Billingham, R.E. 1976.The Immunology of Mammalian Reproduction.Prentice Hall, Englewood Cliffs, NJ.Google Scholar
  13. Belknap, E.B., Baker, J.C., Patterson, J.S., Walker, R.D., Haines, D.M., and Clark, E.G. 1991. The role of passive immunity in bovine respiratory syncytial virus-infected calves.J. Inf. Dis.163:470.CrossRefGoogle Scholar
  14. Besser, T.E., Gay, C.C., McGuire, T.C., and Evermann, J.F. 1988. Passive immunity to bovine rotavirus infection associated with transfer of serum antibody into the intestinal lumen.J. Virol.62:2238.Google Scholar
  15. Besser, T.E., Garmedia, A.E., McGuire, T.C., and Gay, C.C. 1985. Effect of colostral immunoglobulin G1 and immunoglobulin M concentrations on immunoglobulin absorption in calves.J. Dairy Sci.68:2033.CrossRefGoogle Scholar
  16. Blüm, V. 1985.Vertebrate Reproduction.Springer-Verlag, Berlin.Google Scholar
  17. Blumberg, R.S., Koss, T, Story, C.M., Barisani, D., Polischuk, J., Lipin, A., Pablo, L., Green, R., and Simister, N.E. 1995. A major histocompatibility complex class I-related Fc receptor for IgG on rat hepatocytes.J. Clin. Invest.95:2397.CrossRefGoogle Scholar
  18. Bohl, E.H., Frederick, T., and Saif, L.J. 1975. Passive immunity in transmissible gastroenteritis of swine: intramuscular injection of pregnant swine with a modified live-virus vaccine.Amer. J. Vet. Res.36:267.Google Scholar
  19. Bohl, E.H. and Saif, L.J. 1975. Passive immunity in transmissible gastroenteritis of swine: immunoglobulin characteristics of antibodies in milk after inoculating virus by different routes.Inf. & Imm.11:23.Google Scholar
  20. Bolin, S.R. and Ridpath, T.F. 1995. Assessment of protection from systemic infection or disease afforded by low to intermediate titers of passively acquired neutralizing antibody against bovine viral diarrhea virus in calves.Amer. J Vet. Res.56:755.Google Scholar
  21. Bradshaw, B.J. and Edwards, S. 1996. Antibody isotype responses to experimental infection with bovine herpesvirus 1 in calves with colostrally derived antibody.Vet. Microbiol.53:143.CrossRefGoogle Scholar
  22. Brar, J.S., Johnson, D.W., Muscoplat, C.C., Shope, R.E., Jr., and Meiske, J.C. 1978. Maternal immunity to infectious bovine rhinotracheitis and bovine viral diarrhea viruses: duration and effect on vaccination in young calves.Amer. J Vet. Res.39:241.Google Scholar
  23. Carmichael, L.E., Robson, D.S., and Barnes, T.D. 1962. Transfer and decline of maternal infectious hepatitis antibody in puppies.Proc. Soc. Exp. Biol. Med.109:677.Google Scholar
  24. Carmichael, L.E. 1983. Immunization strategies in puppies, why failures?Comp. Cont. Edu. Pract. Vet.5:1043.Google Scholar
  25. Carter, S.D., Hughes, D.E., and Baker, J.R. 1990. Characterization and measurement of immunoglobulins in the grey seal(Halichoerus grypus). J. Comp. Pathol.102:13.CrossRefGoogle Scholar
  26. Casal, M.L., Jezyk, P.F., and Giger, U. 1996. Transfer of colostral antibodies from queens to their kittens.Amer. J Vet. Res.57:1653.Google Scholar
  27. Castrucci, G., Frigeri, E, Ferrari, M., Aldrovandi, V., Tassini, E, and Gatti, R. 1988. The protection of newborn calves against experimental rotavirus infection by feeding mammary secretions from vaccinated cows.Microbiologica11:379.Google Scholar
  28. Chabaudie, N., Leja, C., Oliver, M., and Salmon, H. 1993. Lymphocyte subsets in the mammary gland of sows.Res. Vet. Sci.55:351.CrossRefGoogle Scholar
  29. Chidlow, J.W. and Porter, P. 1979. Intestinal defence of the neonatal pig: interrelationship of gut and mammary function providing surface immunity against colibacillosis.Vet. Rec.104:496.CrossRefGoogle Scholar
  30. Clover, C.K. and Zarkower, A. 1980. Immunologic responses in colostrum-fed and colostrum-deprived calves.Amer. J. Vet. Res.41:1002.Google Scholar
  31. Cockson, A. and McNeice, R. 1980. Surival in the pouch: The role of macrophages and maternal milk cells.Comp. Biochem. Physiol.66A:221.CrossRefGoogle Scholar
  32. Cole, M.F. and Bowen, W.H. 1976. Immunoglobulins A, G, and M in serum and in some secretions of monkeys(Macaca fascicularissyn. irus).Inf. & Imm.13:1354.Google Scholar
  33. Comline, R.S., Roberts, H.E., and Titchen, D.A. 1951. Route of absorption of colostrum globulin in the newborn animal.Nature167:561.CrossRefGoogle Scholar
  34. Contrepois, M., Girardeau, J.P., Dubourguier, H.C., Gouet, P., and Levieux, D. 1978. Specific protection by colostrum from cows vaccinated with the K99 antigen in newborn calves experimentally infected with E. coli Ent+ K99+.Ann. Res. Vet.9:385.Google Scholar
  35. Crighton, D.B. (Ed). 1984. Immunological Aspects of Reproduction in Mammals. Butterworths London.Google Scholar
  36. Dahlgren, U., Ahlstedt, S., Hedman, I., Wansworth, C., and Hanson, L.A. 1981. Dimeric IgA in the rat is transferred from serum into bile but not into milk.Scand. J. Immunol.14:95.CrossRefGoogle Scholar
  37. Deane, E.M., Cooper, D.W., and Renfree, M.B. 1990. Immunoglobulin G levels in fetal and newborn tammar wallabies(Macropus eugenii). Repro. Fert. & Dey.2:369.CrossRefGoogle Scholar
  38. Deane, E.M. and Cooper, D.W. 1984. Immunology of pouch young marsupials. I. Levels of immunoglobulin transferrin and albumin in the blood and milk of euros and wallaroos (hill kangaroos:Macropus robustusmarsupialia).Dey. Comp. Immunol.8:863.CrossRefGoogle Scholar
  39. Dempster, R.P. and Harrison, G.B. 1995. Maternal transfer of protection fromEchinococcus granulosusinfection in sheep.Res. Vet. Sci.58:197.CrossRefGoogle Scholar
  40. Derchia, A.M., Gissi, C., Pesole, G., Saccone, C., and Amason, U. 1996. The guinea-pig is not a rodent.Nature381:597.CrossRefGoogle Scholar
  41. Duchet-Suchaux, M. 1983. Infant mouse model ofE. colidiarrhoea: clinical protection induced by vaccination of the mothers.Ann. Res. Vet.14:319.Google Scholar
  42. Elvinger, E, Baldwin, C.A., Liggett, A.D., Tang, K.N., and Dove, C.R. 1996. Protection of pigs by vaccination of pregnant sows against eastern equine encephalomyelitis virus.Vet. Microbiol.51:229.CrossRefGoogle Scholar
  43. Fayer, R., Andrews, C., Ungar, B.L., and Blagburn, B. 1989. Efficacy of hyperimmune bovine colostrum for prophylaxis of cryptosporidiosis in neonatal calves.J Parasitol.75:393.CrossRefGoogle Scholar
  44. Foged, N.T., Nielsen, J.P., and Jorsal, S.E. 1989. Protection against progressive atrophic rhini-tis by vaccination withasteurella multocidatoxin purified by monoclonal antibodies.Vet. Rec.125:7.CrossRefGoogle Scholar
  45. Fu, Z.F., Hampson, D.J., and Wilks, C.R. 1990. Transfer of maternal antibody against group A rotavirus from sows to piglets and serological responses following natural infection.Res. Vet. Sci.48:365.Google Scholar
  46. Furer, E., Cryz, S.J., Jr., and Germanier, R. 1983. Protection of piglets against neonatal colibacillosis based on antitoxic immunity.Dey. Biol. Stand.53:161.Google Scholar
  47. Furer, E., Cryz, S.J., Jr., Dorner, E, Nicolet, J., Wanner, M., and Germanier, R. 1982. Protection against colibacillosis in neonatal piglets by immunization of dams with procholeragenoid.Inf. & Imm.35:887.Google Scholar
  48. Galan, J.E., Timoney, J.F., and Lengemann, F.W. 1986. Passive transfer of mucosal antibody toStreptococcus equiin the foal.Inf. & Imm.54:202.Google Scholar
  49. Garmendia, A.E. and McGuire, T.C. 1987. Mechanism and isotypes involved in passive immunoglobulin transfer to the newborn alpaca(Lama pacos). Amer. J Vet. Res.48:1465.Google Scholar
  50. Garmendia, A.E., Palmer, G.H., DeMartini, J.C., and McGuire, T.C. 1987. Failure of passive immunoglobulin transfer: a major determinant of mortality in newborn alpacas(Lamapacos). Amer. J Vet. Res. 48:1472. Google Scholar
  51. Ghetie, V. and Ward, E.S. 1997. FcRn: the MHC class I-related receptor that is more than an IgG transporter.Immunol. Today18:592.CrossRefGoogle Scholar
  52. Gombold, J.L. and Ramig, R.F. 1989. Passive immunity modulates genetic reassortment between rotaviruses in mixedly infected mice.J. Viral.63:4525.Google Scholar
  53. Griffin, P. and Wild, A.E. 1987. Ontogeny of the Fey receptor in rat small intestine.J. Reprod. Immunol.11:287.CrossRefGoogle Scholar
  54. Haas, S.D., Bristol, E, and Card, C.E. 1996. Risk factors associated with the incidence of foal mortality in an extensively managed mare herd.Can. Vet. J.37:91.Google Scholar
  55. Halliday, R. 1978. Immunity and health in young lambsVet. Rec.103:489.CrossRefGoogle Scholar
  56. Halsey, J.F., Johnson, B.H., and Cebra, J.J. 1980. Transport of immunoglobulins from serum into colostrum.J. Exp. Med.151:767.CrossRefGoogle Scholar
  57. Halsey, J.F., Mitchell, C., Meyer, R., and Cebra, J.J. 1982. Metabolism of immunoglobulin A in lactating mice: origins of immunoglobulin A in milk.Eur. J. Immunol.12:107.CrossRefGoogle Scholar
  58. Head, J.R. and Beer, A.E. 1978. The ImmunologicRole of Viable Leukocytic Cells in Mammary Exosecretions, in:Lactation A Comprehensive TreatiseB.L. Larson, ed. Academic Press, New York, p. 337.Google Scholar
  59. Heckert, R.A., Saif, L.J., Mengel, J.P., and Myers, G.W. 1991. Mucosal and systemic antibody responses to bovine coronavirus structural proteins in experimentally challenge-exposed calves fed low or high amounts of colostral antibodies.Amer. J. Vet. Res.52:700.Google Scholar
  60. Heddle, R.J. and Rowley, D. 1975. Dog immunoglobulins. I. immunochemical characterization of dog serum, parotid saliva, colostrum, milk and small bowel fluid.Immunol. 29:185. Google Scholar
  61. Hindes, R.D. and Mizell, M. 1976. The origin of immunoglobulins in opossum “embryos”.Dey. Biol.53:49.CrossRefGoogle Scholar
  62. Hodgins, D.C. and Shewen, P.E. 1994. Passive immunity to Pasteurella haemolytica Al in dairy calves: effects of preparturient vaccination of the dams.Can. J. Vet. Res.58:31.Google Scholar
  63. Hodgins, D.C. and Shewen, P.E. 1996. Preparturient vaccination to enhance passive immunity to the capsular polysaccharide of Pasteurella haemolytica Al.Vet. Immunol. Immunopathol.50:67.CrossRefGoogle Scholar
  64. Homberger, F.R. 1992. Maternally-derived passive immunity to enterotropic mouse hepatitis virus.Arch. Virol.122:133.CrossRefGoogle Scholar
  65. Hoover, E.A., Schaller, J.P., Mathes, L.E., and Olsen, R.G. 1977. Passive immunity to feline leukemia: evaluation of immunity from dams naturally infected and experimentally vaccinated. Inf. &Imm.16:54.Google Scholar
  66. Howard, C.J., Clarke, M.C., and Brownlie, J. 1989. Protection against respiratory infection with bovine virus diarrhoea virus by passively acquired antibody.Vet. Microbiol. 19:195. CrossRefGoogle Scholar
  67. Huang, S.C., Hu, Z.L., Hasler-Rapacz, J., and Rapacz, J. 1992. Preferential mammary storage and secretion of immunoglobulin gamma (IgG) subclasses in swine.J Reprod. Immunol.21:15.CrossRefGoogle Scholar
  68. Isaacson, R.E., Dean, E.A., Morgan, R.L., and Moon, H.W. 1980. Immunization of suckling pigs against enterotoxigenic Escherichia coli-induced diarrheal disease by vaccinating dams with purified K99 or 987P pili: antibody production in response to vaccination.Inf. & Imm.29:824.Google Scholar
  69. Israel, E.J., Patel, V.K., Taylor, S.F., Marshak-Rothstein, A., and Simister, N.E. 1995. Requirement for a beta 2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J.Immunol.154:6246.Google Scholar
  70. Israel, E.J., Wilsker, D.F., Hayes, K.C., Schoenfeld, D., and Simister, N.E. 1996. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn.Immunol.89:573.CrossRefGoogle Scholar
  71. Jacobs, H.J., Moriarty, K.M., Charleston, W.A., and Heath, D.D. 1994. Resistance againstTaenia hydatigenain sheep after passive transfer of serum or colostrum.Parasite Immunol.16:351.CrossRefGoogle Scholar
  72. Jakoi, E.R., Cambier, J., and Saslow, S. 1985. Transepithelial transport of maternal antibody:purification of IgG receptor from newborn rat intestine.J. Immunol.135:3360.Google Scholar
  73. Jeffcott, L.B. 1975. The transfer of passive immunity to the foal and its relation to immune status after birth.J. Reprod. Fert.-Suppl.23:727.Google Scholar
  74. Jochims, K., Kaup, E-J., Drommer, W, and Pickel, M. 1994. An immunoelectron microscopic investigation of colostral IgG absorption across the intestine of newborn calves.Res. Vet. Sci.57:75.CrossRefGoogle Scholar
  75. Johnston, N.E., Estrella, R.A., and Oxender, W.D. 1977. Resistance of neonatal calves given colostrum diet to oral challenge with a septicemia-producingEscherichia coli. Amer. J. Vet. Res.38:1323.Google Scholar
  76. Jones, P.W., Collins, R, and Aitken, M.M. 1988. Passive protection of calves against experimental infection withSalmonella typhimurium. Vet. Rec.21:536.CrossRefGoogle Scholar
  77. Junghans, R.P. and Anderson, C.L. 1996. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor.Proc. Natl. Acad. Sci. USA93:5512.CrossRefGoogle Scholar
  78. Kandil, E., Noguchi, M., Ishibashi, T., and Kasahara, M. 1995. Structural and phylogenetic analysis of the MHC class I-like Fc receptor gene.J. Immunol.154:5907.Google Scholar
  79. Katsura, T., Kanamori, M., Kitamoto, O., and Ogata, S. 1985. Protective effect of colostrum inMycoplasma pneumoniaeinfection induced in infant mice.Microbiol. & Immunol.29:883.Google Scholar
  80. Kendrick, J.W. and Stevenson, W. 1979. Immunity to equine herpesvirus 1 infection in foals during the first year of life.J. Repro. Fert.-Suppl.27:615.Google Scholar
  81. King, B.F. 1986. Morphology of the Placenta and fetal membranes, in:Comparative Primate Biology 3: Reproduction and Development.W.R. Dukelow and J. Erwin, eds. J. Alan R Liss Inc, NY, p. 311.Google Scholar
  82. Kitching, R.P. and Salt, J.S. 1995. The interference by maternally-derived antibody with active immunization of farm animals against foot-and-mouth disease.Brit. Vet. J.151:379.CrossRefGoogle Scholar
  83. Klobasa, E. Werhahn, E., and Butler, J.E. 1987. Composition of sow milk during lactation.J. Anim. Sci.64:1458.Google Scholar
  84. Kmetz, M., Schultz, R.D., and Dunne, H.W. 1970. Leukocytes as carriers in the transmission of bovine leukemia: in vitro growth of leukocytes from milk and blood of normal and leukemic cattle.Amer. J Vet. Res.31:587.Google Scholar
  85. Kohn, C.W., Knight, D., Hueston, W, Jacobs, R., and Reed, S.M. 1989. Colostral and serum IgG, IgA, and IgM concentrations in Standardbred mares and their foals at parturition.J. Amer. Vet. Med. Assn.195:64.Google Scholar
  86. Komuves, L.G. and Heath, J.P. 1992. Uptake of maternal immunoglobulins in the enterocytes of suckling piglets: improved detection with a streptavidin-biotin bridge gold technique.J. Histochem. Cytochem.40:1637.CrossRefGoogle Scholar
  87. Krakowka, S., Long, D., and Koestner, A. 1978. Influence of transplacentally acquired antibody on neonatal susceptibility to canine distemper virus in gnotobiotic dogs.J. Inf. Dis.137:605.CrossRefGoogle Scholar
  88. Kunz, C. and Lonnerdal, B. 1993. Protein composition of rhesus monkey milk: comparison to human milk.Comp. Biochem Physiol.4:793.Google Scholar
  89. Lanza, I., Shoup, D.I., and Saif, L.J. 1995. Lactogenic immunity and milk antibody isotypes to transmissible gastroenteritis virus in sows exposed to porcine respiratory coronavirus during pregnancy.Amer. J. Vet. Res.56:739.Google Scholar
  90. Lassauzet, M.L., Johnson, W.O., Thurmond, M.C., and Stevens, E. 1989. Protection of colostral antibodies against bovine leukemia virus infection in calves on a California dairy.Can. J Vet. Res.53:424.Google Scholar
  91. Leary, H.L., Jr. and Lecce, J.G. 1979. The preferential transport of immunoglobulin G by the small intestine of the neonatal piglet.J. Nutr.109:458.Google Scholar
  92. Lee, C.S., McCauley, I., and Hartman, P.E. 1983. Light and electron microscopy of cells in pig colostrum, milk and involution secretion.Acta Anat.117:270.Google Scholar
  93. Lejan, C. 1993. Secretory component and IgA expression by epithelial cells in sow mammary gland and mammary secretions.Res. Vet. Sci.55:265.CrossRefGoogle Scholar
  94. Lejan, C. 1994. A study by flow cytometry of lymphocytes in sow colostrum.Res. Vet. Sci.57:300.CrossRefGoogle Scholar
  95. Lejan, C., L’Haridon, R., Madelaine, M.F., Cornu, C., and Asso, J. 1978. Transfer of antibodies against the CPD virus through colostrum and milk.Ann. Rech. Vet.9:342.Google Scholar
  96. Logan, E.F., McMurray, C.H., O’Neill, D.G., McParland, P.J., and McRory, F.J. 1978. Absorption of colostral immunoglobulins by the neonatal calf.Brit. Vet. J.134:258.Google Scholar
  97. Macartney, L., Thompson, H., McCandlish, I.A., and Cornwell, H.J. 1988. Canine parvovirus: interaction between passive immunity and virulent challenge.Vet. Rec.122:573.CrossRefGoogle Scholar
  98. MacDougall, D.F. 1975. Immunoglobulin metabolism in the neonatal foal.J. Repro. Fert.-Suppl23:739.Google Scholar
  99. Manning, M J. and Turner, R.J. 1976.Comparative ImmunobiologyJohn Wiley and Sons, New York.Google Scholar
  100. Marquez, M.E., Slobodianik, N.H., Ronayne de Ferrer, P.A., Carlini, A.R., Vergani, D.F., and Daneri, G.A. 1995. Immunoglobulin A levels in southern elephant seal(Mirounga leonina)milk during the suckling period.Comp. Biochem. Physiol.3:569.Google Scholar
  101. Matte, J.J., Girard, C.L., Seoane, J.R., and Brisson, G.J. 1982. Absorption of colostral immunoglobulin G in the newborn dairy calf.J. Dairy Sci.65:1765.CrossRefGoogle Scholar
  102. McFerran, J.B. 1975. Studies on immunity to Aujeszky’s disease (pseudorabies) virus infection in pigs.Dey. Biol. Stand.28:563.Google Scholar
  103. McGuire, T.C., Crawford, T.B., Hallowell, A.L., and Macomber, L.E. 1977. Failure of colostral immunoglobulin transfer as an explanation for most infections and deaths of neonatal foals.J. Amer. Vet. Med. Assn.170:1302.Google Scholar
  104. McGuire, T.C., Pfeiffer, N.E., Weikel, J.M., and Bartsch, R.C. 1976. Failure of colostral immunoglobulin transfer in calves dying from infectious disease.J Amer. Vet. Med. Assn.169:713.Google Scholar
  105. McGuire, T.C., Regnier, J., Kellom, T., and Gates, N.L. 1983. Failure in passive transfer of immunoglobulin G1 to lambs: measurement of immunoglobulin G1 in ewe colostrums.Amer. J. Vet. Res.44:1064.Google Scholar
  106. Mechor, G.D., Rousseaux, C.G., Radostits, O.M., Babiuk, L.A., and Petrie, L. 1987. Protection of newborn calves against fatal multisystemic infectious bovine rhinotracheitis by feeding colostrum from vaccinated cows.Can. J Vet. Res.51:452.Google Scholar
  107. Medesan, C., Radu, C., Kim, J.K., Ghetie, V., and Ward, E.S. 1996. Localization of the site of the IgG molecule that regulates maternofetal transmission in mice.Eur. J. Immunol.26:2533.CrossRefGoogle Scholar
  108. Menanteau-Horta, A.M., Ames, T.R., Johnson, D.W., and Meiske, J.C. 1985. Effect of maternal antibody upon vaccination with infectious bovine rhinotracheitis and bovine virus diarrhea vaccines.Can. J Comp. Med.49:10.Google Scholar
  109. Micusan, V.V. and Borduas, A.G. 1977. Biological properties of goat immunoglobulins GImmunol.32:373.Google Scholar
  110. Milner, A.R. and Marshall, I.D. 1984. The role of colostrum and milk in protection of the neonatal mouse against peripheral infection with Ross River virus. Brief report.Arch. Virol.82:101.CrossRefGoogle Scholar
  111. Moon, H.W. 1981. Protection against enteric colibacillosis in pigs suckling orally vaccinated dams: evidence for pili as protective antigens.Amer. J. Vet. Res. 42:173. Google Scholar
  112. Morris, J.A., Wray, C., and Sojka, W.J. 1980. Passive protection of lambs against enteropathogenicEscherichia coli:role of antibodies in serum and colostrum of dams vaccinated with K99 antigen.J Med. Microbiol.13:265.CrossRefGoogle Scholar
  113. Moxley, R.A., Olson, L.D., and Solorzano, R.F. 1989. Relationship among transmissible gastroenteritis virus antibody titers in serum, colostrum, and milk from vaccinated sows, and protection in their suckling pigs.Amer. J. Vet. Res. 50:119. Google Scholar
  114. Mucchielli, A., Laliberte, F., and Laliberte, M.E 1983. A new experimental method for the dynamic study of the antibody transfer mechanism from mother to fetus in the rat.Placenta4:175.CrossRefGoogle Scholar
  115. Musoke, A.J., Williams, J.F., Leid, R.W., and Williams, C.S. 1975. The immunological response of the rat to infection with T.taeniaeformis.IV. Immunoglobulins involved in passive transfer of resistance from mother to offspring.Immunol.29:845.Google Scholar
  116. Nagy, L.K., MacKenzie, T., and Painter, K.R. 1985. Protection of the nursing pig against experimentally induced enteric colibacillosis by vaccination of dam with fimbrial antigens ofE coli(K88, K99 and 987P).Vet. Rec.16:408.CrossRefGoogle Scholar
  117. Nielsen, R. 1975. Colostral transfer of immunity toHaemophilus parahaemolyticusin pigs.Nord. Vetmed.27:319.Google Scholar
  118. Nocek, J.E., Braund, D.G., and Warner, R.G. 1984. Influence of neonatal colostrum administration, immunoglobulin, and continued feeding of colostrum on calf gain, health, and serum protein.J. Dairy Sci.67:319.CrossRefGoogle Scholar
  119. Norcross, N.L. 1982. Secretion and composition of colostrum and milk.J. Amer. Vet. Med. Assn.181:1057.Google Scholar
  120. Olson, J.C. and Leslie, G.A. 1982. IgD: a component of the secretory immune system?, in:Immunoglobulin D: Structure and Function.G.J. Thorbecke and G.A. Leslie, eds.Ann. N.Y. Acad Sci.399:97.Google Scholar
  121. Omata, Y., Oikawa, H., Kanda, M., Mikazuki, K., Dilorenzo, C., Claveria, F.G., Takahashi, M., Igarashi, I., Saito, A., and Suzuki, N. 1994. Transfer of antibodies to kittens from mother cats chronically infected with Toxoplasma gondii.Vet. Parasit.52:211.CrossRefGoogle Scholar
  122. Outteridge, P.M. and Lee, C.S. 1988. The defense mechanisms of the mammary gland of domestic ruminants.Progr. Vet. Microbiol. Immunol.4:165.Google Scholar
  123. Parkinson, D.E., Ellis, R.P., and Lewis, L.D. 1982. Colostrum deficiency in mule deer fawns: identification, treatment and influence on neonatal mortality.J Wildlife Dis. 18:17.Google Scholar
  124. Paul, P.S., Mengeling, W.L., and Brown, T.T., Jr. 1980. Effect of vaccinal and passive immunity on experimental infection of pigs with porcine parvovirus.Amer. J Vet. Res. 41:1368.Google Scholar
  125. Paul, P.S., Mengeling, W.L., and Pirtle, E.C. 1982. Duration and biological half-life of passively acquired colostral antibodies to porcine parvovirus.Amer. J Vet. Res.43:1376.Google Scholar
  126. Pearson, R.C., Hallowell, A.L., Bayly, W.M., Torbeck, R.L., and Perryman, L.E. 1984. Times of appearance and disappearance of colostral IgG in the mare.Amer. J. Vet. Res.45:186.Google Scholar
  127. Perino, L.J., Sutherland, R.L., and Woollen, N.E. 1993. Serum gamma-glutamyltransferase activity and protein concentration at birth and after suckling in calves with adequate and inadequate passive transfer of immunoglobulin G.Amer. J. Vet. Res.54:56.Google Scholar
  128. Perryman, L.E. and McGuire, T.C. 1980. Evaluation for immune system failures in horses and ponies.J. Amer. Vet. Med. Assn. 176:1374.Google Scholar
  129. Perryman, L.E., McGuire, T.C., and Torbeck, R.L. 1980. Ontogeny of lymphocyte function in the equine fetus.Amer. J. Vet. Res. 41:1197.Google Scholar
  130. Pollock, R.V. and Carmichael, L.E. 1982. Maternally derived immunity to canine parvovirus infection: transfer, decline, and interference with vaccination.J Amer. Vet. Med. Assn.180:37.Google Scholar
  131. Prince, G.A., Horswood, R.L., Camargo, E., Koenig, D., and Chanock, R.M. 1983. Mechanisms of immunity to respiratory syncytial virus in cotton rats.Inf. & Immun.42:81.Google Scholar
  132. Prince, G.A., Horswood, R.L., and Chanock, R.M. 1985. Quantitative aspects of passive immunity to respiratory syncytial virus infection in infant cotton rats. J.Viral.55:517.Google Scholar
  133. Pugh, C.A. and Wells, P.W. 1985. Protection of lambs against enteric colibacillosis by vaccination of ewes.Res. Vet. Sci.38:255.Google Scholar
  134. Raghavan, M. and Bjorkman, EJ. 1996. Fc receptors and their interactions with immunoglobuline.Ann. Rev. Cell. Dey. Biol.12:181.CrossRefGoogle Scholar
  135. Raghavan, M., Gastinel, L.N., and Bjorkman, P.J. 1993. The class I major histocompatibility complex related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release.Biochem.32:8654.CrossRefGoogle Scholar
  136. Raidal, S.L. 1996. The incidence and consequences of failure of passive transfer of immunity on a thoroughbred breeding farm.Aust. Vet. J73:201.CrossRefGoogle Scholar
  137. Rea, D.E., Tyler, J.W., Hancock, D.D., Besser, T.E., Wilson, L., Krytenberg, D.S., and Sanders, S.G. 1996. Prediction of calf mortality by use of tests for passive transfer of colostral immunoglobulin.J Amer. Vet. Med. Assn.208:2047.Google Scholar
  138. Renfree, M.B. 1973. The composition of fetal fluids of the marsupialMacropus eugenii. Dey. Biol.33:62.CrossRefGoogle Scholar
  139. Rickard, M.D., Adolph, A.J., and Arundel, J.H. 1977. Vaccination of calves againstTaenia saginatainfection using antigens collected during in vitro cultivation of larvae: passive protection via colostrum from vaccinated cows and vaccination of calves protected by maternal antibody.Res. Vet. Sci.23:365.Google Scholar
  140. Riedel-Caspari, G. 1993. The influence of colostral leukocytes on the course of experimentalEscherichia coliinfection and serum antibodies in neonatal calves.Vet. Immunol. Immunopathol.35:275.CrossRefGoogle Scholar
  141. Riedel-Caspari, G. and Schmidt, F.W. 1990. Review article: Colostral leukocytes and their significance for the immune system of newborns.DTW-Deutsche Tier. Wschrift. 97:180.Google Scholar
  142. Riedel-Caspari, G. and Schmidt, F.W. 1991a. The influence of colostral leukocytes on the immune system of the neonatal calf. II. Effects on passive and active immunization.DTWDeutsche Tier. Wschrift.98:190.Google Scholar
  143. Riedel-Caspari, G. and Schmidt, F.W. 1991b. The influence of colostral leukocytes on the immune system of the neonatal calf. I. Effects on Lymphocyte responses.DTW-Deutsche Tier. Wschrift.98:102.Google Scholar
  144. Rijke, E.O., Webster, J., and Baars, J.C. 1983. Vaccination of piglets against post-weaning“E. coli”enterotoxicosis.Dev. Biol. Stand.53:155.Google Scholar
  145. Robinson, J.A., Allen, G.K., Green, E.M., Fales, W.H., Loch, W.E., and Wilkerson, C.G. 1993. A prospective study of septicaemia in colostrum-deprived foals.Equine Vet. J.25:214.CrossRefGoogle Scholar
  146. Robison, J.D., Stott, G.H., and DeNise, S.K. 1988. Effects of passive immunity on growth and survival in the dairy heifer.J. Dairy Sci. 71:1283.CrossRefGoogle Scholar
  147. Ross, PS., de Swart, R.L., Visser, I.K., Vedder, L.J., Murk, W., Bowen, W.D., and Osterhaus, A.D. 1994. Relative immunocompetence of the newborn harbour sealPhoca vitulina. Vet. Immunol. Immunopathol.42:331.CrossRefGoogle Scholar
  148. Rutter, J.M., Jones, G.W., Brown, G.T., Burrows, M.R., and Luther, P.D. 1976. Antibacterial activity in colostrum and milk associated with protection of piglets against enteric disease caused by K88-positive Escherichia coli.Inf. Immun.13:667.Google Scholar
  149. Saif, L.J., Redman, D.R., Smith, K.L., and Theil, K.W. 1983. Passive immunity to bovine rotavirus in newborn calves fed colostrum supplements from immunized or nonimmunized cows.Inf. Immun.41:1118.Google Scholar
  150. Saif, L.J. and Smith, K.L. 1985. Enteric viral infections of calves and passive immunity.J. Dairy Sci.68:206.CrossRefGoogle Scholar
  151. Samples, K., Vandenberg, J.L., and Stone, W.H. 1986. Passively acquired immunity in the newborn of a marsupial(Monodelphis domestica). Am. J. Reprod. Immunol. Microbiol.11:94.Google Scholar
  152. Sams, M.G., Lochmiller, R.L., Qualls, C., Jr., Leslie, D., Jr., and Payton, M.E. 1996. Physiological correlates of neonatal mortality in an overpopulated herd of white-tailed deer.J. Mamm.77:179.CrossRefGoogle Scholar
  153. Sasaki, M., Lawsom, B.L., and Nelson, D.R. 1977. Kinetic analysis of the binding of immunoglobulins IgG1 and IgG2 to bovine mammary cells.Biochim. Biophys. Acta497:160.CrossRefGoogle Scholar
  154. Sawyer, M., Willadsen, C.H., Osburn, B.I., and McGuire, T.C. 1977. Passive transfer of colostral immunoglobulins from ewe to lamb and its influence on neonatal lamb mortality.J. Amer. Vet. Med. Assn.171:1255.Google Scholar
  155. Sestak, K., Lanza, I., Park, S.K., Weilnau, P.A., and Saif, L.J. 1996. Contribution of passive immunity to porcine respiratory coronavirus to protection against transmissible gastroenteritis virus challenge exposure in suckling pigs.Amer. J. Vet. Res.57:664.Google Scholar
  156. Sheldrake, R.F. and Husband, A.J. 1985. Intestinal uptake of intact maternal lymphocytes by neonatal rats and lambs.Res. Vet. Sci.36:10.Google Scholar
  157. Shoup, D.I., Jackwood, D.J., and Saif, L.J. 1997. Active and passive immune responses to transmissible gastroenteritis virus (TGEV) in swine inoculated with recombinant baculovirusexpressed TGEV spike glycoprotein vaccines.Amer. J Vet. Res.58:242.Google Scholar
  158. Simister, N.E., Jacobowitz Israel, E., Ahouse, J.C., and Story, C.M. 1997. New functions of the MHC class I-related Fc receptor, FcRn.Biochem. Soc. Trans.25:481.Google Scholar
  159. Smith, I.M., Giles, C.J., and Baskerville, A.J. 1982. Immunisation of pigs against experimental infection withBordetella bronchiseptica. Vet. Rec.110:488.CrossRefGoogle Scholar
  160. Smith, W.D., Dawson, A.M., Wells, P.W., and Burrells, C. 1975. Immunoglobulin concentrations in ovine body fluids.Res. Vet. Sci.19:189.Google Scholar
  161. Snodgrass, D.R., Campbell, I., Mwenda, J.M., Chege, G., Suleman, M.A., Morein, B., and Hart, C.A. 1995. Stimulation of rotavirus IgA, IgG and neutralizing antibodies in baboon milk by parenteral vaccination.Vaccine13:408.CrossRefGoogle Scholar
  162. Snodgrass, D.R., Fahey, K.J., Wells, P.W., Campbell, I., and Whitelaw, A. 1980. Passive immunity in calf rotavirus infections: maternal vaccination increases and prolongs immunoglobulin G1 antibody secretion in milk.Inf. Immun.28:344.Google Scholar
  163. Snodgrass, D.R., Nagy, L.K., Sherwood, D., and Campbell, I. 1982. Passive immunity in calf diarrhea: vaccination with K99 antigen of enterotoxigenicEscherichia coliand rotavirus.Inf. Immun.37:586.Google Scholar
  164. Snodgrass, D.R. and Wells, P.W. 1978. The immunoprophylaxis of of rotavirus infections in lambs.Vet. Rec.102:146.CrossRefGoogle Scholar
  165. Sojka, W.J., Wray, C., and Morris, J.A. 1978. Passive protection of lambs against experimental enteric colibacillosis by colostral transfer of antibodies from K99-vaccinated ewes.J. Med. Micro.11:493.CrossRefGoogle Scholar
  166. Staak, C. and Luge, E. 1995. Copro-antibody in calves from dams vaccinated againstSalmonella typhimurium. Zblt. Vetmed.-Reihe. B.42:493.Google Scholar
  167. Steele, M.G. and Leslie, G.A. 1985. Immunoglobulin D in rat serum, saliva and milk.Immunol.55:571.Google Scholar
  168. Stone, S.S., Kemeny, L.J., Woods, R.D., and Jensen, M.T. 1977. Efficacy of isolated colostral IgA, IgG, and IgM(A) to protect neonatal pigs against the coronavirus of transmissible gastroenteritis.Amer. J. Vet. Res.38:1285.Google Scholar
  169. Story, C.M., Mikulska, J.E., and Simister, N.E. 1994. A major histocompatibility complex class I-like Fc receptor cloned from human placenta: possible role in transfer of immunoglobulin G from mother to fetus.J. Exp. Med.180:2377.CrossRefGoogle Scholar
  170. Stott, G.H., Marx, D.B., Menefee, B.E., and Nightengale, G.T. 1979a Colostral immunoglobulin transfer in calves. IV. Effect of suckling.J Dairy Sci.62:1908.CrossRefGoogle Scholar
  171. Stott, G.H., Marx, D.B., Menefee, B.E., and Nightengale, G.T. 1979b Colostral immuno-globulin transfer in calves. II. The rate of absorption.J. Dairy Sci.62:1766.CrossRefGoogle Scholar
  172. Stott, G.H., Marx, D.B., Menefee, B.E., and Nightengale, G.T. 1979c. Colostral immuno-globulin transfer. III. Amount of absorption.J. Dairy Sci.62:1902.CrossRefGoogle Scholar
  173. Stott, G.H. and Menefee, B.E. 1978. Selective absorption of immunoglobulin IgM in the newborn calf.J. Dairy Sci.61:461.CrossRefGoogle Scholar
  174. Sutton, R.J. 1979. The passive transfer of immunity toTaenia ovisin lambs via colostrum.Res. Vet. Sci.27:197.Google Scholar
  175. Sweet, C., Bird, R.A., Jakeman, K., Coates, D.M., and Smith, H. 1987. Production of passive immunity in neonatal ferrets following maternal vaccination with killed influenza A virus vaccines.Immunol.60:83.Google Scholar
  176. Thatcher, E.F. and Gershwin, L.J. 1989. Colostral transfer of bovine immunoglobulin E and dynamics of serum IgE in calves.Vet. Immunol. Immunopathol.20:325.CrossRefGoogle Scholar
  177. Tsunemitsu, H., Shimizu, M., Hirai, T., Yonemichi, H., Kudo, T., Mori, K., and Onoe, S. 1989. Protection against bovine rotaviruses in newborn calves by continuous feeding of immune colostrum.Jap. J. Vet. Sci.51:300.CrossRefGoogle Scholar
  178. Valente, C., Fruganti, G., Tesei, B., Ciorba, A., Cardaras, P., Floris, A., and Bordoni, E. 1988. Vaccination of pregnant cows with K99 antigen of enterotoxigenicEscherichia coliand protection by colostrum in newborn calves.Comp. Immunol. Microbiol. & Inf. Dis.11:189.CrossRefGoogle Scholar
  179. Vannier, P., Hutet, E., and Cariolet, R. 1995. Influence of passive immunity on pig immunization with deleted Aujeszky’s disease vaccines measured by the amount of wild virus excretion after challenge.Vet. Microbiol.43:53.CrossRefGoogle Scholar
  180. Virtala, A.M., Mechor, G.D., Grohn, Y.T., and Erb, H.N. 1996. The effect of calfhood diseases on growth of female dairy calves during the first 3 months of life in New York State.J. Dairy Sci.79:1040.CrossRefGoogle Scholar
  181. Wild, A.E., Burrows, T.D., and Brand, J. 1994. IgG transport across the gut of the suckling opossum(Monodelphis domestica). Dey. Comp. Immunol.18:75.CrossRefGoogle Scholar
  182. Wilson, R.A. and Jutila, J.W. 1976a. Experimental neonatal colibacillosis in cows: serological studies.Inf. Immun.13:92.Google Scholar
  183. Wilson, R.A. and Jutila, J.W. 1976b. Experimental neonatal colibacillosis in cows: immunoglobin classes involved in protection.Inf. Immun.13:100.Google Scholar
  184. Woods, R.D. and Wesley, R.D. 1986. Immune response in sows given transmissible gastroenteritis virus or canine coronavirus.Amer. J Vet. Res.47:1239.Google Scholar
  185. Yadav, M., Eadie, M., and Stanley, N.F. 1971. The thymus glands of a marsupialSetonix brachyurus(quokka) and their role in immune responses. VI. Maternal transfer of immunoglobulinsAust. J. Exp. Biol. Med. Sci.49:322.Google Scholar
  186. Yadav, M., Eadie, M., and Stanley, N.F. 1973. Passage of maternal immunoglobulins to the pouch young of a marsupialSetonix brachyurus. Aust. J. Zool.21:171.CrossRefGoogle Scholar
  187. Yamada, T., Nagai, Y., and Matsuda, M. 1991. Changes in serum immunoglobulin values in kittens after ingestion of colostrum.Amer. J. Vet. Res.52:393.Google Scholar
  188. Young, L., Basden, K., Cooper, D,W, and Deane, E.M. 1997. Cellular components of the milk of the tammar wallaby(Macropus eugenii). Aust. J. Zool.45:423.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Ian Tizard
    • 1
  1. 1.Department of Veterinary PathobiologyTexas A&M UniversityUSA

Personalised recommendations