Skip to main content

The Antimicrobial Function of Milk Lipids

  • Chapter
Book cover Advances in Nutritional Research

Part of the book series: Advances in Nutritional Research ((ANUR,volume 10))

Abstract

Milk is not only a source of nutrients for the newborn but also a source of immunoglobulins and non-immunoglobulin secretory products, similar to those of other parts of the secretory immune system, which play an important role in protecting mucosal surfaces from infection. Infants who are breast-fed have been found to have a lowered incidence of gastrointestinal infections than infants fed formula or cow’s milk (Larsen and Homer, 1978; Cunningham, 1979; Myerset al.1984). The incidence of any infection in very low birthweight infants is significantly lower in infants fed human milk than in infants fed formula (Hylanderet al.1998). While early studies of milk attributed this protective action to immunoglobulins, primarily secretory IgA (sIgA), other studies suggest that nonspecific protective factors play an important role in the initial defense against infection (Welsh and May, 1979).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D.S., Klevjer-Anderson, P, Carlson, J.L., McGuire, T.C., and Gorham, J.R. 1983. Transmission and control of caprine arthritis-encephalitis virus.Am. J Vet. Res. 44:1670–1675.

    CAS  Google Scholar 

  • Adinolfi, M. and Glynn, A. 1979. The interaction of antibacterial factors in breast milk.Develop. Med. Child. Neuorol.21:808–819.

    Article  CAS  Google Scholar 

  • Alexander, E.R., Harrison, H.R., Lewis, M., Sim, D.A., and Podgore, J.K. 1982. Strategies for prevention of infant chlamydial disease, in:Chlamydial Infections(P-A. Mardh, K.K. Holmes, J.D. Oriel, R. Piot, and J. Schachter, eds.), pp. 225–228, Elsevier Biomedical Press, Amsterdam

    Google Scholar 

  • Aly, R., Maibach, H.I., Shinefield, H.R., and Strauss, W.G. 1972.Survival of pathogenic microorganisms on human skin.J Invest. Dermatol.58:205–210.

    Article  CAS  Google Scholar 

  • Asanuma, H., Numazaki, K., Nagata, N., Hotsubo, T., Horino, K., and Chiba, S. 1996. Role of milk whey in the transmission of human cytomegalovirus infection by breast milk.Microbiol. Immunol.40(3):201–204.

    CAS  Google Scholar 

  • Baba, T.W., Koch, K.J., Mittler, E.S., Greene, M., Wyand, M., Penninck, D., and Ruprecht, R.M. 1994. Mucosal infection of neonatal rhesus monkeys with cell-free SIV.Aids Res. Human Retroviruses10:351–357.

    Article  CAS  Google Scholar 

  • Ballantine, D.L., Gerwick, W.H., Velez, S.M., Alexander, E., and Guevara, R 1987. Antibiotic activity of lipid-soluble extracts from Caribbean marine algae. 1987. Antibiotic activity of lipid-soluble extracts from Caribbean marine algae, in:Hydrobiologia(M.A. Ragan and C.J. Bird, eds.)Twelfth International Seaweed Symposiumpp. 463–469, Dr. W. Junk Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Beem, M.O. and Saxon, E.M. 1982. Chlamydia trachomatis infection in infants, in:Chlamydial Infections(R-A. Mardh, K.K. Holmes, J.D. Oriel, R Piot., and J. Schachter, eds.), pp. 199–212, Elsevier Biomedical Press, Amsterdam.

    Google Scholar 

  • Bertolli, J., St. Louis, M.E., Simonds, R.J., Nieburg, R, Kamenga, M., Brown, C., Tarande, M., Quinn, T., and Ou, C.-Y. 1996. Estimating the timing of mother-to-child transmission of human immunodeficiency virus in a breast-feeding population in Kinshasa, Zaire.J Infect. Dis. 174:722–726.

    Article  CAS  Google Scholar 

  • Bibel, D.J., Miller, S.J., Brown, B.E., Pandey, B.B., Elias, P.M., Shinefield, H.R., and Aly, R. 1989. Antimicrobial activity of stratum corneum lipids from normal and essential fatty acid-deficient mice.J Invest. Dermatol.92:632–638.

    Article  CAS  Google Scholar 

  • Bryson, Y.J., Winter, H.S., Gard, S.E., Fischer, T.J., and Stiehm, E.R. 1980. Deficiency of immune interferon production by leukocytes of normal newborns.Cell Immunol.55:191–200.

    Article  CAS  Google Scholar 

  • Canas-Rodriguez, A. and Smith, H.W. 1966. The identification of the antimicrobial factors of the stomach contents of suckling rabbits.Biochem.J 100:79–82.

    CAS  Google Scholar 

  • Coonrod, J.D. 1986. The role of extracellular bactericidal factors in pulmonary host defense.Sem. Respir. Infect. 1:118–129.

    CAS  Google Scholar 

  • Coonrod, J.D. 1987. Role of surfactant free fatty acids in antimicrobial defenses.Eur. J. Respir. Dis.71:209–214.

    Google Scholar 

  • Coonrod, J.D. and Yoneda, K. 1983. Detection and partial characterization of antibacterial factor(s) in alveolar lining material of rats.J. Clin. Invest. 71:129–141.

    Article  CAS  Google Scholar 

  • Cunningham, A.S. 1979. Morbidity in breast-fed and artificially fed infants. II. J.Pediatr.59:685–689.

    Google Scholar 

  • Datta, P., Embree, J.E., Kreiss, J.K., Ndinya-Achola, J.O., Braddick, M., Temmerman, M., Nagelkerke, N.J.D., Maitha, G., Holmes, K.K., Piot, P., Pamba, H.O., and Plummer, EA. 1994. Mother-to-child transmission of human immunodeficiency virus type 1: Report from the Nairobi study.J Infect. Dis. 170:1134–1140.

    Article  CAS  Google Scholar 

  • Dawson, M. 1987. Pathogenesis of maedi-visna.Vet. Rec.120:451–454.

    Article  CAS  Google Scholar 

  • Elbagir, A., Petterson, M., Lindahl, M., Gene, M., Froman, G., and Mardh, P.-A. 1990. Influence of whole human milk, and fractions thereof, on inclusion-formation of Chlamydia trachomatis in McCoy cells.APMIS98:609–614.

    Article  CAS  Google Scholar 

  • Eliakim, R., DeSchryver-Kecskemetis, K., Nogee, L., Stenson, W.F., and Alpers, D.H. 1989.Isolation and characterization of a small intestinal surfactant-like particle containing alkaline phosphatase and other digestive enzymes.J Biol. Chem.264:20614–20619.

    CAS  Google Scholar 

  • Eng, T.R. and Butler, W.T. 1997. In:Confronting Sexually Transmitted Diseases The Hidden Epidemicpp. 1–432, National Academy Press, Washington, DC.

    Google Scholar 

  • Falkler, W.A., Jr., Diwan, A.R., and Halstead, S.B. 1975. A lipid inhibitor of Dengue virus in human colostrum and milk; with a note on the absence of anti-Dengue secretory antibody.Arch. Virol.47:3–10.

    Article  Google Scholar 

  • Fearon, D.T. 1997. Seeking wisdom in innate immunity.Nature388:323–324.

    Article  Google Scholar 

  • Freed, L.M., York, C.M., Hamosh, P., Mehta, N.R., and Hamosh, M. 1987. Bile salt-stimulated lipase of human milk: Characteristics of the enzyme in the milk of mothers of premature and full-term infants.J Pediatr. Gastroenteml. Nutr.6:598–604.

    Article  CAS  Google Scholar 

  • Gillin, F.D. and Reiner, D.S. 1983. Human milk kills parasitic intestinal protozoa.Science 221:1290–1292.

    Article  CAS  Google Scholar 

  • Goldman, A.S., Ham Pong, A.J., and Goldblum, R.M. 1985. Host defenses: Development and maternal contributions, in:Advances in Pediatrics(L.A. Barnes, ed.), pp. 71–100, Year Book Publication, Chicago.

    Google Scholar 

  • Hainaut, P., Vaira, D., Francois, C., Calberg-Bacq, C.-M., and Osterrieth, P.M. 1985. Natural infection of Swiss mice with mouse mammary tumor virus (MMTV): Viral expression in milk and transmission of infection.Arch. Virol. 83:195–206.

    Article  CAS  Google Scholar 

  • Hamosh, M. 199la. Lipid metabolism, in:Neonatal Nutrition and Metabolism(WH. Hay, Jr., ed.), pp. 122–142

    Google Scholar 

  • Mosby Year Dock, St. Louis. Hamosh, M. 199 lb. Free fatty acids and monoglycerides: Anti-infective agents produced during the digestion of milk fat by the newborn, in:Immunology of Milk and the Neonate(J. Mesteckyet al.eds.), pp. 151–158, Plenum Press, New York.

    Google Scholar 

  • Hamosh, M. and Scow, R.O. 1971. Lipoprotein lipase activity in guinea pig and rat milk.Biochim. Biophys. Acta231(2):283–289.

    Article  CAS  Google Scholar 

  • Hernell, O. and Blackberg, L. 1985. Lipolysis in human milk: Causes and consequences, in:Composition and Physiological Properties of Human Milk(J. Schaud, ed.), pp. 165–177, Elsevier Science Publishers, B.V. (Biomedical Division).

    Google Scholar 

  • Hernell, O., Ward, H., Blackberg, L., and Pereira, M.E.A. 1986. Killing of Giardia lamblia by human milk lipases: An effect mediated by lipolysis of milk lipids.J Infect. Dis.153:715–720.

    Article  CAS  Google Scholar 

  • Hylander, M.A., Strobino, D.M., and Dhanireddy, R. 1998 Human milk feeding and infection among very low birth weight infants.Pediatrics102(3):E38.

    Article  CAS  Google Scholar 

  • Isaacs, C.E. and Thormar, H. 1990. Human milk lipids inactivate enveloped viruses, in:Breastfeeding Nutrition Infection and Infant Growth in Developed and Emerging Countries(SA. Atkinson, L.A. Hanson, and R.K. Chandra, eds.), pp. 161–174, ARTS Biomedical Publishers and Distributors, St. John’s, Newfoundland, Canada.

    Google Scholar 

  • Isaacs, C.E., Kashyap, S., Heird, W.C., and Thormar, H. 1990. Antiviral and antibacterial lipids in human milk and infant formula feeds.Arch. Dis. Child.65:861–864.

    Article  CAS  Google Scholar 

  • Isaacs, C.E., Litov, R.E., and Thormar, H. 1995 Antimicrobial activity of lipids added to human milk, infant formula, and bovine milk.J. Nutr. Biochem.6:362–366.

    Article  CAS  Google Scholar 

  • Isaacs, C.E., Litov, R.E., Marie, P., and Thormar, H. 1992. Addition of lipases to infant formulas produces antiviral and antibacterial activity.J. Nutr. Biochem.3:304–308.

    Article  CAS  Google Scholar 

  • Isaacs, C.E., Thormar, H., and Pessolano, T. 1986. Membrane-disruptive effect of human milk:Inactivation of enveloped viruses.J. Infect. Dis.154:966–971.

    Article  CAS  Google Scholar 

  • Jensen, R.G. 1996. The lipids in human milk, in:Prog. Lipid Res.Elsevier Science Ltd., Great Britain, pp. 53–92.

    Google Scholar 

  • Jensen, R.G., Ferris, A.M., Lami-Keefe, C.J., and Henderson, R.A. 1989. Lipids of bovine and human milks: A comparison.J. Dairy Sci.73:223–240.

    Article  Google Scholar 

  • Kabara, J.J. 1978. Fatty acids and derivatives as antimicrobial agents. A review, in:The Pharmacological Effect of Lipids(J.J. Kabara, ed.), pp. 1–14, The American Oil Chemists Society, St. Louis.

    Google Scholar 

  • Kabara, J.J. 1980. Lipids as host-resistance factors of human milk.Nutr. Reviews38:6573.

    Google Scholar 

  • Kearney, J.N., Ingham, E., Cunliffe, W.J., and Holland, K.T. 1984. Correlations between human skin bacteria and skin lipids.Br. J. Dermatol.110:593–599.

    Article  CAS  Google Scholar 

  • Kreiss, J. 1997. Breastfeeding and vertical transmission of HIV-1.Acta Paediatr. Suppl.421:113–117.

    Article  CAS  Google Scholar 

  • Laegreid, A., Kolstootnaess, A.-B., Orstavik, I., and Carlsen, K.H. 1986. Neutralizing activity in human milk fractions against respiratory syncytial virus.Acta Paediatr. Scand.75:696–701.

    Article  CAS  Google Scholar 

  • Lal, R.B., Gongora-Biachi, R.A., Pardi, D., Switzer, W.M., Goldman, I., and Lal, A.A. 1993. Evidence for mother-to-child transmission of human T lymphotropic virus type II.J. Infect. Dis.168:586–591.

    Article  CAS  Google Scholar 

  • Larsen, S.A., Jr. and Homer, D.R. 1978. Relation of breast versus bottle feeding to hospitalization for gastroenteritis in a middle-class U.S. population.J. Pediatr.92:417–418.

    Article  Google Scholar 

  • Mandel, I.D. and Ellison, S.A. 1985. The biological significance of the nonimmunoglobulin defense factors, in:The Lactoperoxidase System Chemistry and Biological Significance(M. Pruitt and J.O. Tenovuo, eds.), pp. 1–14, NY, Marcel Dekker, Inc.

    Google Scholar 

  • Miller, S.J., Aly, R., Shinefeld, H.R., and Elias, P.M. 1988. In vitro and in vivo antistaphylococcal activity of human stratum corneum lipids.Arch. Dermatol.124:209–215.

    Article  CAS  Google Scholar 

  • Moldoveanu, Z., Tenovuo, J., Pruitt, K.M., Mansson-Rahemtulla, B., and Mestecki, J. 1983. Antibacterial properties of milk: IgA-peroxidase-lactoferrin interactions.Ann. NYAcad. Sci.409:848–850.

    Article  CAS  Google Scholar 

  • Mostad, S.B., Overbaugh, J., DeVange, D.M., Welch, M.J., Chohan, B., Mandaliya, K., Byange, P., Martin, H.L., Jr., Ndinya-Achola, J., Bwayo, J.J., and Kreiss, J.K. 1997. Hormonal contraception, vitamin A deficiency, and other risk factors for shedding of HIV-1 infected cells from the cervix and vagina.Lancet350:922–927.

    Article  CAS  Google Scholar 

  • Muskiet, EA.J., Hutter, N.H., Martini, I.A., Jonxis, J.H.P., Offringa, EJ., and Boersma, E.R. 1987. Comparison of the fatty acid composition of human milk from mothers in Tanzania, Curacao and Surinam.Human Nutr: Clin. Nutr. 41C:149–159.

    CAS  Google Scholar 

  • Myers, M.G., Fomon, S.J., Koontz, F.P, McGuinness, G.A., Lachenbruch, P.A., and Hollingshead, R. 1984. Respiratory and gastrointestinal illnesses in breast-and formula-fed infants.Am. J. Dis. Child.138:629–632.

    CAS  Google Scholar 

  • Newburg, D.S. 1997. Do the binding properties of oligosaccharides in milk protect human infants from gastrointestinal bacteria?J. Nutr.127(5Suppl):980S–984S.

    Google Scholar 

  • Newburg, D.S., Viscidi, R.P., Ruff, A., and Yolken, R.H. 1992. A human milk factor inhibits binding of human immunodeficiency virus to the CD4 receptor.Pediatr. Res.31(1): 22–28.

    Article  CAS  Google Scholar 

  • Noseda, A., White, J.G., Godwin, P.L., Jerome, W.G., and Modest, E.J. 1989. Membrane damage in leukemic cells induced by ether and ester lipids: An electron microscopic study.Exper. Molec. Pathol.50:69–83.

    Article  CAS  Google Scholar 

  • Numazaki, K. 1997. Human cytomegalovirus infection of breast milk.FEMS Immun. Med. Microbiol. 18:91–98.

    Article  CAS  Google Scholar 

  • Ogra, P.L. and Losonsky, G.A. 1984. Defense factors in products of lactation, in:Nutritional and Immunological Interactions(P.L. Ogra, ed.), pp. 67–87, Grune and Stratton, Orlando, FL.

    Google Scholar 

  • Reiner, D.S., Wang, C.-S., and Gitlin, F.D. 1986. Human milk kills Giardia lamblia by generating toxic lipolytic products.J. Infect. Dis.154:825–832.

    Article  CAS  Google Scholar 

  • Reiter, B. 1981. The contribution of milk to resistance to intestinal infection in the newborn, in:Immunological Aspects of Infection in the Fetus and Newborn, (H.P. Lambert and C.B.S. Wood, eds.), Academic Press, London: New York.

    Google Scholar 

  • Rohrer, L., Winterhalter, K.H., Eckert, J., and Kohler, P. 1986. Killing of Giardia lamblia by human milk is mediated by unsaturated fatty acids. Antimicrob.Agents Chemother.30:254–257.

    Article  CAS  Google Scholar 

  • Rosell, K.-G. and Srivastava, L.M. 1987. Fatty acids as antimicrobial substances in brown algae, in:Hydrobiologia(M.A. Ragan and C.J. Bird, eds.), pp. 471–475, Twelfth International Seaweed Symposium, Dr. W. Jung Publishers, Dordrecht, Netherlands.

    Google Scholar 

  • Ross, A.C., Davila, M.E., and Cleary, M.P. 1985. Fatty acids and retinyl esters of rat milk: Effects of diet and duration of lactation.J. Nutt-. 115:1488–1497.

    CAS  Google Scholar 

  • Roubinian, J.R. and Blair, P.B. 1980. Short gastric veins as the major portal of entry for milk-borne murine mammary tumor virus.JNCI65:795–800.

    CAS  Google Scholar 

  • Ruff, A.J. 1994. Breastmilk, breastfeeding, and transmission of viruses to the neonate.Seminars in Perinatology18:510–516.

    CAS  Google Scholar 

  • Sarkar, N.H., Charney, J., Dion, A.S., and Moore, D.H. 1973. Effect of human milk on the mouse mammary tumor virus.Cancer Res.33:626–629.

    CAS  Google Scholar 

  • Schanler, R.J., Goldblum, R.M., Garza, C., and Goldman, A.S. 1986. Enhanced fecal excretion of selected immune factors in very low birth weight infants fed fortified human milk.Pediatr. Res.20:71–715.

    Article  Google Scholar 

  • Sellon, R.K., Jordan, H.L., Kennedy-Stoskopf, K., Tompkins, M.B., and Tompkins, W.A.F. 1994. Feline immunodeficiency virus can be experimentally transmitted via milk during acute maternal infection.J. Virol. 68:3380–3385.

    CAS  Google Scholar 

  • Sharpe, A.H., Hunter, J.J., Ruprecht, R., and Jaenisch, R. 1989. Maternal transmission of retroviral disease and strategies for preventing infection of the neonate.J. Virol. 63:1049–1053.

    CAS  Google Scholar 

  • Shibasaki, I. and Kato, N. 1978. Combined effects on antibacterial activity of fatty acids and their esters against gram-negative bacteria, in:The Pharmacological Effect of Lipids(J.J. Kabara, ed.), pp. 15–24, The American Oil Chemists Society, St. Louis.

    Google Scholar 

  • Smith, H.W. 1966. The antimicrobial activity of the stomach contents of suckling rabbits.J. Pathol. Bacteriol. 91:1–9.

    Article  CAS  Google Scholar 

  • Southern, S.O. and Southern, EJ. 1998. Persistent HTLV-1 infection of breast luminal epithelial cells: A role in HTLV transmission?Virol.241:200–214.

    Article  CAS  Google Scholar 

  • Thormar, H., Isaacs, C.E., Brown, H.R., Barshatzky, M.R., and Pessolano, T. 1987. Inactivation of enveloped viruses and killing of cells by fatty acids and monoglycerides.Antimicrob. Agents Chemother.31:27–31.

    Article  CAS  Google Scholar 

  • Watanabe, T., Nagura, H., Watanabe, K., and Brown, W.R. 1984. The binding of human milk lactoferrin to immunoglobulin A.FEBS Letts.168:203–207.

    Article  CAS  Google Scholar 

  • Welsh, J.K. and May, J.T. 1979. Anti-infective properties of breast milk.J. Pediatr. 94:1–9.

    Article  CAS  Google Scholar 

  • Welsh, J.K., Arsenakis, M., Coelen, R.J., and May, J.T. 1979. Effect of antiviral lipids, heat, and freezing on the activity of viruses in human milk.J. Infect. Dis.140:322–328.

    Article  CAS  Google Scholar 

  • Welsh, J.K., Skurrie, I.J., and May, J.T. 1978. Use of Semliki forest virus to identify lipid-mediated antiviral activity and anti-alphavirus immunoglobulin A in human milk.Infect.Imm.19:395–401.

    CAS  Google Scholar 

  • Whitley, R.J. 1994. Herpes simplex virus infections of women and their offspring: Implications for a developed society.Proc. Natl. Acad. Sci.91:2441–2447.

    Article  CAS  Google Scholar 

  • Winter, H.S., Gard, S.E., Fischer, T.J., Bryson, Y.J., and Stiehm, E.R. 1983. Deficient lymphokine production of newborn lymphocytes.Pediatr. Res.17:573–578.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Isaacs, C.E. (2001). The Antimicrobial Function of Milk Lipids. In: Woodward, B., Draper, H.H. (eds) Advances in Nutritional Research. Advances in Nutritional Research, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0661-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0661-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5182-5

  • Online ISBN: 978-1-4615-0661-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics