Perspectives for DNA Studies on Polar Ice Cores

Part of the Series of the Centro de Estudios Científicos book series (SCEC)

Abstract

Recently amplifiable ancient DNA was obtained from a Greenland ice core. The DNA revealed a diversity of fungi, plants, algae and protists and has thereby expanded the range of detectable organic material in fossil glacier ice. The results suggest that ancient DNA can be obtained from other ice cores as well. Here, we present some future perspectives for DNA studies on polar ice cores in regard to molecular ecology, DNA damage and degradation, anabiosis and antibiotic resistance genes. Finally, we address some of the methodological problems connected to ancient DNA research.

Keywords

Methane Dust Sulfide Phytoplankton Anemia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abyzov, S. S., 1993, Microorganisms in the Antarctic ice, in: Antarctic Microbiology,E. I. Friedmann, ed., Wiley-Liss, Inc. USA, pp. 265–295.Google Scholar
  2. Abyzov, S. S., Bobin, N. E., and Kudryashov, B. B., 1982, Quantitative analysis of microorganisms during the microbial investigation of Antarctic glaciers, lzvestiya Akademii Nauk SSSR, Seriya Biologicheskaya,6:897–905. (in Russian).Google Scholar
  3. Andreae, M. O., 1990, Ocean-atmosphere interactions in the global biogeochemical sulphur cycle, Marine Chemistry, 30:1–29.CrossRefGoogle Scholar
  4. Austin, J. J., Ross, A. J., Smith, A. B., Fortey, R. A., and Thomas, R. H., 1997, Problems of reproducibility: Does geologically ancient DNA survive in amber-preserved insects? Proceedings of the Royal Society London, Series B.,264:467–474.CrossRefGoogle Scholar
  5. Bada, J. L., 1972, Kinetics of racemization of amino acids as a function of pH, Journal of the American Chemical Society, 94:1371–1373.CrossRefGoogle Scholar
  6. Bourgeois, J. C., 1986, A pollen record from the Agassiz Ice Cap, northern Ellesmere Island, Canada, Boreas, 15:345–354.CrossRefGoogle Scholar
  7. Brook, E. J., Sowers, T., and Orchardo, J., 1996, Rapid variations in atmospheric methane concentrations during the past 110,000 years, Science,273:1087–1090.CrossRefGoogle Scholar
  8. Cano, R. J., and Borucki, M. K., 1995, Revival and identification of bacterial spores in 25- to 40-million-yearold Dominican amber, Science, 268:1060–1064.CrossRefGoogle Scholar
  9. Chappellaz, J., Bamola, J. M., Raynaud, D., Korotkevich, Y. S., and Lorius, C., 1990, Ice-core record of atmospheric methane over the past 160,000 years, Nature, 345:127–131.CrossRefGoogle Scholar
  10. Christner, B. C., Mosley-Thompson, E., Thompson, L. G., Zagorodov, V., Sandman, K., and Reeve, J. N., 2000, Recovery and identification of viable microorganisms immured in glacial ice, Icarus, 144:479–485.CrossRefGoogle Scholar
  11. Cooper, A., Poiner, H. N., Pääbo, S., Radovic, J., Debenath, A., Caparros, M., Barroso-Ruiz, C., Bertranpetit, J., Nielsen-Marsh, C., Hedges, R. E., and Sykes, B., 1997, Neanderthal genetics, Science, 277:1021–1024.CrossRefGoogle Scholar
  12. Cooper, A., Rambaut, A., Macaulay, V., Willerslev, E., Hansen, A. J., and Stringer, C., 2001, Human origins and ancient human DNA, Science, 292:1655–1656.CrossRefGoogle Scholar
  13. Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., Hvidberg, C. S., Steffensen, J. P., Sveinbjörnsdóttir, A. E., Jouzel, J., and Bond, G. C., 1993, Evidence for general instability of past climate from a 250-kyr ice-core record, Nature, 364:218–220.CrossRefGoogle Scholar
  14. Eglinton, G., 1996, Some thoughts on: Life detection on Earth and the limits of microbial life, ABI Newsletter, 3:10.Google Scholar
  15. Frank, L., 1999, Cool DNA, Science, 285:327.CrossRefGoogle Scholar
  16. Fredskild, B., and Wagner, O., 1974, Pollen and fragments of plant tissue in core samples from the Greenland Ice Cap, Boreas, 3:105–108.CrossRefGoogle Scholar
  17. Giovannoni, S., Britschgi, T., and Feld, K., 1990, Genetic diversity in Sargasso Sea bacterioplankton, Nature, 345:60–63.CrossRefGoogle Scholar
  18. Greenwood, A. D., Capelli, C., Possnert, G., and Pääbo, S., 1999, Nuclear DNA sequences from late Pleistocene megafauna, Molecular Biology and Evolution, 16:1466–1473.CrossRefGoogle Scholar
  19. Hagelberg, E., Thomas, M. G., Cook, C. E. Jr, Sher, A.V., Baryshnikov, G. F., and Lister, A. M.,1994, DNA from ancient mammoth bones, Nature, 370:333–334.CrossRefGoogle Scholar
  20. Hammer, C. U., Clausen, H. B., Dansgaard, W., Neftel, A., Kristinsdottir, P., and Johnson, E., 1985, Continuous impurity analysis along the Dye 3 deep core, Geophysical Monograph, 33:90–94.CrossRefGoogle Scholar
  21. Handt, O., Richards, M., Trommsdorff, M., Kilger, C., Simanainen, J., Georgiev, O., Bauer, K., Stone, A., Hedges, R., and Schaffner, W. 1994a, Molecular genetic analyses of the Tyrolean Ice Man, Science, 264:1775–1778.CrossRefGoogle Scholar
  22. Handt, O., Höss, M., Krings, M., and Pääbo, S., 1994b, Ancient DNA: methodological challenges, Experientia,50:524–529.CrossRefGoogle Scholar
  23. Hansen, A. J., Willerslev, E., Wiuf, C., Mourier, T., and Arctander, P., 2001, Statistical evidence miscoding lesions in ancient DNA templates, Molecular Biology and Evolution, 18:262–265.CrossRefGoogle Scholar
  24. Höss, M., Jaruga, P., Zastawny, T. H., Dizdaroglu, M., and Pääbo, S., 1996, DNA damage and DNA sequence retrieval from ancient tissues, Nucleic Acids Research, 24:1304–1307.CrossRefGoogle Scholar
  25. Keller, M. D., Bellows, W. K., and Guillard, R. R. L., 1989, Dimethyl sulfide production in marine phytoplankton, in: Biogenetic sulphur in the environment, E. Saltzman and W. J. Cooper, eds., American Chemical Society Symposium Series, Washingon DC, 393:167–182.CrossRefGoogle Scholar
  26. Kennedy, M. J., Reader, S. L., and Swierczynski, L. M., 1994, Preservation records of micro-organisms: evidence of the tenacity of life, Microbiology, 140:2513–2529.CrossRefGoogle Scholar
  27. Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., and Pääbo, S., 1997, Neanderthal DNA sequences and the origin of modem humans, Cell, 90:19–30.CrossRefGoogle Scholar
  28. Kumai, M., and Langway Jr, C. C., 1988, Scanning electron-microscope analysis of aerosols in snow and ice cores from Greenland, Annals of Glaciology, 10:208.Google Scholar
  29. Legrand, M., Fenist-Saigne, C., Saltzman, E. S., Germain, C., and Barkov, N. I., 1991, Ice-core record of oceanic emissions of dimethyl sulphide during the last climate cycle, Nature, 350:144–146.CrossRefGoogle Scholar
  30. Liesack, W., and Stackebrandt, E., 1992, Occurrence of novel groups of the Domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment, Journal of Bacteriology,174:5072–5078.Google Scholar
  31. Lindahl, T., 1993, Instability and decay of the primary structure of DNA, Nature, 362:709–715.CrossRefGoogle Scholar
  32. Lindahl, T., and Nyberg, B., 1972, Rate of depurination of native deoxyribonucleic acid, Biochemistry, 11:3610–3618.CrossRefGoogle Scholar
  33. MacAndrews, J. H., 1984, Pollen analysis of the 1973 ice core from Devon Island ice cap, Canada, Quaternary Research, 22:68–73.CrossRefGoogle Scholar
  34. Mullis, K. B., and Faloona, F., 1987, Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction, Methods in Enzymology, 155:335–350.CrossRefGoogle Scholar
  35. Pääbo, S., 1990, Amplifying ancient DNA in: PCR Protocols: A guide to methods and applications, M. A. Innis, D. H. Gelfand, J. J. Sninsky and T. J. White, eds., Academic Press, San Diego, pp. 159–166.Google Scholar
  36. Pääbo, S., Higuchi, R. G., and Wilson, A. C. Ancient DNA and the polymerase chain reaction, Journal of Biological Chemistry. 264, 9709–9712 (1989).Google Scholar
  37. Poiner, H. N., Höss, M., Bada, J. L., and Pääbo, S., 1996, Amino acid racemization and the preservation of ancient DNA, Science, 272:864–866.CrossRefGoogle Scholar
  38. Rollo, F., Asci, W., Antonini, S., Marota, I., and Ubaldi, M., 1994, Molecular ecology of Neolithic meadow: the DNA of the grass remains from the archaeological site of the Tyrolean Iceman, Experientia, 50:576–584.CrossRefGoogle Scholar
  39. Saiki, R. K., Scharf, S., Faloona, F., Mullis, K. B., Horn, G. T., Erlich, H. A., and Arnheim, N., 1985, Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia, Science, 230:1350–1354.CrossRefGoogle Scholar
  40. Saltzman, E. S., Whung, P. Y., and Mayewski, P. A., 1997, Methanesulphonate in the Greenland ice sheet project 2 ice core, Journal of Geophysical Research,102:26649–26657.CrossRefGoogle Scholar
  41. Shaw, K. J., Rather, P. N., Hare, R. S., and Miller, G. H., 1993, Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes, Microbiological Reviews, 57:138–163.Google Scholar
  42. Schmidt, T., Hummel, S., and Herrmann, B., 1995, Evidence of contamination in PCR laboratory disposables, Naturwissenschaften, 82:423–431.CrossRefGoogle Scholar
  43. Speer B. S., Shoemaker, N. B., and Salyers, A. A., 1992, Bacterial resistance to tetracycline: Mechanisms, transfer and clinical significance, Clinical Microbiology Reviews, 5:387–399.Google Scholar
  44. Stone, R., 1999, Permafrost comes alive for Siberian researchers, Science, 286:36–37.Google Scholar
  45. Ubaldi, M., Sassaroli, S., and Rollo, F., 1996, Ribosomal DNA analysis of culturable Deuteromycetes from the Iceman’s hay: Comparison of living and mummified fungi, Ancient Biomolecules, 1:35–42.Google Scholar
  46. van Elsas, J. D., 1992, Antibiotic resistance gene transfer in the environment: an overview, in: Genetic interactions among microorganisms in the natural environment,E. M. H. Wellington and J. D. van Elsas, eds., Pergamon Press, Oxford, pp. 17–39.Google Scholar
  47. Ward, D. M., Weller, R., and Bateson, M. M., 1990, 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community, Nature,345:63–65.CrossRefGoogle Scholar
  48. Willerslev, E., Hansen, A. J., Christensen, B., Steffensen, J. P., and Arctander, P., 1999, Diversity of Holocene life forms in fossil glacier ice, Proceedings of the National Academy of Sciences USA,96:8017–8021.CrossRefGoogle Scholar
  49. Willerslev, E., Hansen, A. J., Nielsen, K. K., and Adsersen, H. E., in press, Numbers of endemic and native plant species in the Galapagos Archipelago in relation to geographical parameters, Ecography. Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Department of Evolutionary BiologyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations