Lignin and Its Polyblends — A Review

  • Dorel Feldman


The lignin present in plant tissues is referred to as native or natural lignin. During the industrial delignification of lignocellulosic materials such as wood, lignin undergoes significant structural changes; so the lignins obtained under industrial conditions, the so-called technical lignins, are not identical with the native ones in their structures.


Sugar Cane Bagasse Kraft Lignin Cellulose Acetate Butyrate Hydrolysis Lignin Molding Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Barlow, Polymer blends for engineering applications, Anales de la Asociacion Quimica Argentina 84(1). 87–93 (1996).Google Scholar
  2. 2.
    X. Cao, M. Jiang, and T. Yu, Controlable specific interaction and miscibility in polymer blends; hydrogen bonding and morphology, Makromol. Chem.190, 117–128 (1989).CrossRefGoogle Scholar
  3. 3.
    H. A. Schneider, The Gordon-Taylor equation. Additivity and interaction in compatible polymer blends, Makromol Chem. 189, 1941–1955 (1988).CrossRefGoogle Scholar
  4. 4.
    K. A. Solen and M. C. Kuchar, Chemical compatibility of polymeric materials, Chem.Eng.Edu. (Spring), 94–98 (1990).Google Scholar
  5. 5.
    M. Ratzsh and G. Handel, Interactions between polymers, Makromol. Chem. Macromol. Symp. 38, 81–98 (1990).CrossRefGoogle Scholar
  6. 6.
    N. C. Liu and W. E. Baker, Reactive polymers for blend compatibilization, Ad. Polym. Technol 11(4), 249–262 (1992).CrossRefGoogle Scholar
  7. 7.
    A. Simmons and A. Eisenberg, Miscibility enhancement in ionomeric blends, Polym. Prepr. (ACS Div. Polym. Chem) 27(1), 341 (1986).Google Scholar
  8. 8.
    J. M. Rodriguez-Parada and V. Percec, Interchain electron-donor-acceptor complexes - a model to study polymer-polymer miscibility, Macromolecules 19, 55–64 (1986).CrossRefGoogle Scholar
  9. 9.
    J. M. G. Cowie and C. Love, The use of molecular recognition to obtain selective blending in polymer systems, Polym. 42, 4783–4789 (2001).CrossRefGoogle Scholar
  10. 10.
    E. Roffael and B. Dix, Lignin and lignosulfonate in non-conventional bonding - an overview, Holz als Roh -und Werkstoff 49, 199–205 (1991).CrossRefGoogle Scholar
  11. 11.
    A. Pizzi, F-A. Cameron, and G. H. van der Klashorst, Soda bagasse lignin adhesives for particle board, in: Adhesives from Renewable Resources, edited by R. W. Hemingway, A. H. Conner, and S. J. Branham (ACS Symposium Series 385, Washington, 1987), pp. 82–95.Google Scholar
  12. 12.
    M. J. de A. Pimenta and E. Frollini, Lignin utilization as “macromonomer” in the synthesis of phenolic type resins, Anais. Assoc. Bras. Quim. 46(1), 43–49, (1997).Google Scholar
  13. 13.
    S. A. Mikhanov, V. M. Golubev, and E. S. Bilimova, Use of lignin in the production of phenol-formaldehyde foam plastic, Intl. Polym. Sci. Technol 14(6), 74 (1987).Google Scholar
  14. 14.
    P. M. Cook and T. Sellers Jr., Organosoly lignin-modified phenolic resin, in: Lignin, Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 324–333.CrossRefGoogle Scholar
  15. 15.
    A. L. Wooten, T. Sellers Jr., and P. M. Tahir, Reaction of formaldehyde with lignin, For. Prod. J. 38(6), 45–46 (1988).Google Scholar
  16. 16.
    H. Pecina, G. Kuhne, Z. Bemaczyk, and O. Wienhaus, Lignin-Phenol-Bindemittel fur die Holzwerkstoffherstellung, Holz als Roh-and Werkstoff 49, 391–397 (1991).CrossRefGoogle Scholar
  17. 17.
    H. Pecina, G. Kuhne, Z. Bemaczyk, and O. Wienhaus, Lignin-Phenol-Bindmittel fur die Holzwerkstoffherstelung Holz als Roh-and Werkstoff 50, 407–409 (1992).CrossRefGoogle Scholar
  18. 18.
    D. J. Gardner and G. D. McGinnis, Comparison of the reaction rates of the alkali-catalyzed addition of formaldehyde to phenol and selected lignins, J. Wood Chem. Technol. 8(2), 261–288 (1988).CrossRefGoogle Scholar
  19. 19.
    R. E. Ysbrandy, R. D. Sanderson, and G. F. R. Gerisher, DSC thermal analysis of phenol and phenol-lignin extended resols and their physical behaviour in paper laminates, Das Papier 46(2), 62–67 (1991).Google Scholar
  20. 20.
    A. Y. Kharade and D. D. Kale, Effect of lignin on phenolic novolak resins and molding powder, Eur. Polym. J. 34(2), 201–205 (1998).CrossRefGoogle Scholar
  21. 21.
    R. S. G. Piccolo, F. Santos, and E. Frollini, Sugar cane bagasse lignin in resol-type resin: alternative application for lignin-phenol-formaldehyde resins, J. Macromol. Sci. Pure. Appl. Chem. A 34(1), 153–164 (1997).CrossRefGoogle Scholar
  22. 22.
    P. Benar and U. Schuchardt, Organosolv lignins from sugar cane bagasse as component in resols, Fifth European Workshop on Lignocellulosics and Pulp (Aveiro Portugal, August 30 - September 2, 1998), pp. 45–48.Google Scholar
  23. 23.
    P. Benar, A. G. Goncavles, D. Mandelli, and U. Shuchardt, Eucalyptus organosolv lignins: study of the hydroxymethylation and use of resols, Bioresource Technol. 68,11–16, (1999).CrossRefGoogle Scholar
  24. 24.
    H. K. Ono and K. Sudo, Wood adhesives from phenolysis lignin. A way to use lignin from steam-explosion process, in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 334–346.CrossRefGoogle Scholar
  25. 25.
    P. C. Muller and W. G. Glasser, Engineering plastics from lignin, VIII. Phenolic resin, Prepolymer synthesis and analysis, J. Adhesion 17,157–174 (1984).CrossRefGoogle Scholar
  26. 26.
    P. C. Muller, S. S. Kelly, and W. G. Glasser, Engineering plastics from lignin, IX. Phenolic resin, synthesis and analysis, J. Adhesion 17, 185–206, (1984).CrossRefGoogle Scholar
  27. 27.
    M. Olivares, J. A. Guzman, A. Natho, and A. Saavedra, Kraft lignin utilization in adhesives, Wood Sci. Technol. 22, 157–165 (1988).CrossRefGoogle Scholar
  28. 28.
    A. Mathiasson and D. G. Kubat, Lignin binder in particle boards using high frequency heating. Holz als Roh-und Wekstoff 52, 9–18 (1994).CrossRefGoogle Scholar
  29. 29.
    W. Peng and B. Riedl, The chemorheology of phenol-formaldehyde thermoset resin and mixtures of the resin with lignin fillers, Polymer 35(6), 1280–1286 (1994).CrossRefGoogle Scholar
  30. 30.
    H. Pecina, Z. Bemaczyk, O. Wienhaus, and G. Kuhne, Lignin-Phenol-Bindemittel fur die Holzwerkstoffherstellung, Die Reaktivitat von Lignin-Phenol-Bindemitteln, Holz als Roh-and Werkstoff 52(1), 1–5 (1994).CrossRefGoogle Scholar
  31. 31.
    N. Shiraishi, Recent progress in wood dissolution and adhesives from Kraft lignin, in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 488–495.CrossRefGoogle Scholar
  32. 32.
    W. L. S. Nieh and W. G. Glasser, Lignin epoxide: synthesis and characterization, in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series, 397, Washington, 1989), pp.506–514.CrossRefGoogle Scholar
  33. 33.
    B. Tomita, K. Kurozomi, A. Takemura, and S. Hosoya, Ozonide lignin-epoxy resins; synthesis and use, in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 496–505.CrossRefGoogle Scholar
  34. 34.
    D. Feldman and D. Banu, Kinetic data on the curing of an epoxy polymer in the presence of lignin, J. Polym. Sci. 26(4), 973–983 (1988).Google Scholar
  35. 35.
    D. Feldman and M. Khoury, Epoxy-lignin polyblends II: Mechanical behavior and weathering, J. Adhesion Sci. Technol. 2(2), 107–116 (1988).CrossRefGoogle Scholar
  36. 36.
    D. Feldman, D. Banu and M. Khoury, Epoxy-lignin polyblends III: Thermal properties and infrared analysis, J. Appl. Polym. Sci. 37, 877–887 (1989).CrossRefGoogle Scholar
  37. 37.
    J. Wang and D. Feldman, Effects of organo-silanes on the adhesive properties of epoxy-lignin polyblends, J. Adhesive Sci. Technol. 5(7), 565–577 (1991).CrossRefGoogle Scholar
  38. 38.
    J. Wang, D. Banu and D. Feldman, Epoxy-lignin polyblends: effects of various components on adhesive properties, J. Adhesive Sci. Technol. 6(5), 587–598 (1992).CrossRefGoogle Scholar
  39. 39.
    D. Feldman, D. Banu, A. Natansohn, and J. Wang, Structure-properties relations of thermally cured epoxy-lignin polyblends, J. Appl. Polym. Sci. 42,1537–1550 (1991).CrossRefGoogle Scholar
  40. 40.
    D. Feldman, D. Banu, M. Lacasse, J. Wang, and C. Luchian, Lignin and its polyblends, J. Macromol Sci. Pure Applied Chem. A 32(849), 1613–1619 (1995).CrossRefGoogle Scholar
  41. 41.
    H. Ito and N. Shiraishi, Epoxy resin adhesives from thiolignin, Mokuzay Gakkaishi 33(5), 393–399 (1987).Google Scholar
  42. 42.
    D. Feldman and A. Baskaran, The effect of adding lignin to poly(dimethyl-siloxane) - poly(vinyl chloride) blends, J. Adhesion 27, 231–243 (1989).CrossRefGoogle Scholar
  43. 43.
    D. Feldman, M. Lacasse, and D. Banu, Contribution to the modification of an acrylic sealant with lignin, J. Polym. Mater. 5, 131–139 (1988).Google Scholar
  44. 44.
    W. G. Glasser, C. Barnett, T. Rials, and S. Kelley, Synthesis and characterization of several different hydroxyalkyl lignin derivatives, Proc. Int. Symp. Wood Pulping Chem. (Tsukuba, Japan) 3, 89–94 (1983).Google Scholar
  45. 45.
    W. G. Glasser, C. A. Barnett, T. G. Rials, and V. P. Saraf, Engineering plastics from lignin II: characterization of hydroxyalkyl lignin derivatives, J Appl. Polym. Sci. 29,1815–1830 (1984).CrossRefGoogle Scholar
  46. 46.
    V. P. Saraf and W. G. Glasser, Engineering plastics from lignin III: Structure-property relationships in solution cast polyurethane films, J Appl. Polym. Sci. 29, 1831–1841 (1984).CrossRefGoogle Scholar
  47. 47.
    T. G. Rials and W. G. Glasser, Engineering plastics from lignin IV: Effects of cross-link density on polyurethane film properties - variations in NCO:OH ratio,Holzforcshung 38(4), 191–199 (1984).CrossRefGoogle Scholar
  48. 48.
    A. Natansohn, M. Lacasse, D. Banu, and D. Feldman, CP-Mass NMR spectra of polyurethane - lignin blends, J. Appl. Polym. Sci. 40, 899–904 (1989).CrossRefGoogle Scholar
  49. 49.
    D. Feldman and M. Lacasse, Polymer-filler interaction in polyurethane - Kraft lignin polyblends, J Appl. Polym. Sci. 51, 701–709 (1994).CrossRefGoogle Scholar
  50. 50.
    D. Feldman, M. Lacasse. and R. St. J. Manley, Polyurethane based sealant modified by blending with Kraft lignin, J. Appl. Polym. Sci. 35, 247–257 (1988).CrossRefGoogle Scholar
  51. 51.
    D. Feldman and M. Lacasse, Swelling characteristics of lignin filled polyurethane sealant, J Adhesion Sci. Technol. 8(5), 472–484 (1994).Google Scholar
  52. 52.
    D. Feldman and M. Lacasse, Mechanical characteristics of sealants based on polyurethane - lignin polyblends, J. Adhesion Sci. Technol. 8(9), 957–969 (1994).CrossRefGoogle Scholar
  53. 53.
    D. Feldman, C. Luchian, D. Banu, and M. Lacasse, Polyurethane - maleic anhydride grafted lignin polyblends, Cellulose Chem. Technol. 25, 163–180 (1991).Google Scholar
  54. 54.
    D. V. Evtuguin, J. P. Andreolety, and A. Gandini, Polyurethanes based on oxygen organosolv lignin, Eur. Polym. J 34(8), 1163–1169 (1998).CrossRefGoogle Scholar
  55. 55.
    E. G. Lyubeshkina, Lignins as components of polymeric composite materials, Russian Chem. Rev. 52(7), 1196–1224 (1983).CrossRefGoogle Scholar
  56. 56.
    C. I. Simionescu, M. M. Macoveanu, C. Vasile, F. Ciobanu, M. Esanu, A.I oanid, P. Vidrascu, and N. Buruntea, Polyolefins/lignosulfonates blends, Cellulose Chem. Technol. 30, 411–420 (1996).Google Scholar
  57. 57.
    C. Vasile, M. Downey, B. Wong, M. M. Macoveanu, M. Pascu, J. H. Choi, C. Sung, and W. Baker, Isotactic polypropylene/epoxy -modified lignin blends, Cellulose Chem. Technol. 32, 61–88 (1998).Google Scholar
  58. 58.
    H. Levon, J. Huhtala, B. Malm, and J. J. Lindberg, Improvement of the thermal stabilization of polyethylene with lignosulphonate, Polymer 28(April), 745–750 (1987).CrossRefGoogle Scholar
  59. 59.
    S. Casenave, A. Ait-Kadi, and B. Riedl, Mechanical behavior of highly filled lignin - polyethylene composites made by catalytic grafting, Can. J. Chem. Eng. 74(April), 308–315 (1996).CrossRefGoogle Scholar
  60. 60.
    V. Demianova and B. Kosikova, Lignin utilization in polyolefin blends, in: Lignocellulosics Science, Technology,Development and Use, edited by J. F. Kennedy, G. O. Phillips, and P. A. Williams (Elis Hardwood, Chichester, 1992) pp. 827–831.Google Scholar
  61. 61.
    B. Kosikova, M. Kacurakova, and V. Demianova, Photooxidation of the composite lignin/polypropylene films, Chem. Papers 42(2), 132–136 (1993).Google Scholar
  62. 62.
    B. Kosikova, V. Demianova, and M. Kacurakova, Sulfur-free lignins as composites of polypropylene films, J. Appl. Polym. Sci. 47, 1065–1073 (1993).CrossRefGoogle Scholar
  63. 63.
    J. Kubat and H. E. Stromvall, Properties of injection molded lignin-filled polyethylene and polystyrene, Plast. Rubber Process. Appl. 3, 111–118 (1983).Google Scholar
  64. 64.
    I. Chodak, R. Brezny, and L. Rychla, Blends of polypropylene with lignin. I: Influence of a lignin addition on cross-linking and thermooxidation stability of polypropylene, Chem. Papers 40(4), 461–470 (1986).Google Scholar
  65. 65.
    J. Rosch and R. Mulhaupt, Mechanical properties of organosoly - lignin filled thermoplastics, Polym. Bulletin 32, 361–365 (1994).CrossRefGoogle Scholar
  66. 66.
    H. D. Rozman, K. W. Tan, R. N. Kumar, A. Abubakar, Z. A. M. Ishak, and H. Ismail, The effect of lignin as a compatibilizer on the physical properties of coconut fiber - polypropylene composites, Eur.Polym. J. 36(7), 1483–1494 (2000).CrossRefGoogle Scholar
  67. 67.
    H. G. Hofmann, Polymer blend modification of PVC in: Polymer Blends and Mixtures, edited by D. J. Walsh, J. S. Higgins and A. Maconnachie (Martinus Nijhoff, Dordrecht, 1985) pp. 117–118.CrossRefGoogle Scholar
  68. 68.
    D. Feldman, D. Banu, and S. El-Raghi, Poly(vinyl chloride) - lignin blends for outdoor application in building. J. Macromol. Sci. Pure Appl. Chem. A 31(5), 555–571 (1994).Google Scholar
  69. 69.
    D. Feldman, D. Banu, J. Lora and S. El-Raghi, Rigid poly(vinyl chloride) - organosolv lignin blends for applications in building, J. Appl. Polym. Sci. 61, 2119–2128 (1996).CrossRefGoogle Scholar
  70. 70.
    D. Feldman and D. Banu, Contribution to the study of rigid PVC polyblends with different lignins, J. Appl. Polym. Sci. 66, 1731–1744 (1997).CrossRefGoogle Scholar
  71. 71.
    D. Feldman, D. Banu, J. Campanelli, and H. Zhu, PVC-plasticized lignin polyblends, Poly Millennial 2000 International Conference (Waikoloa, Hawaii), December 9–13, 2000.Google Scholar
  72. 72.
    E. P. Galimov, V. P. Dmitriev, and R. K. Nizamov, Film materials based on PVC and hydrolysis lignin, Intern. Polym. Sci. Technol. 18(8), 55–56 (1991).Google Scholar
  73. 73.
    Y. Li, J. Milnar, and S. Sarkanen, The first 85% Kraft lignin - based thermoplastics, J. Polym. Sci. Part B, Polym. Physics 35, 1899–1910 (1997).CrossRefGoogle Scholar
  74. 74.
    Y. Li and S. Sarkanen, Thermoplastics with very high lignin contents, in: Lignin: Historical, Biological,and Materials Perspectives, edited by W. G. Glasser, R. A. Northey and T. P. Schultz (ACS Symposium Series 742, Washington, 2000) pp. 351–366.Google Scholar
  75. 75.
    T. G. Rials and W. G. Glasser, Multiphase materials with lignin. IV Blends of Hydroxypropyl cellulose with lignin, J. Appl. Polym. Sci. 37, 2399–2415 (1989).CrossRefGoogle Scholar
  76. 76.
    I. Ghosh, R. K. Jain, and W. G. Glasser, Blends of biodegradable thermoplastics with lignin esters, in: Lignin: Historical,Biological and Materials Perspectives, edited by W. G. Glasser, R. A. Northey, and T. P. Schultz (ACS Symposium Series 742, Washington, 2000) pp. 331–350.Google Scholar
  77. 77.
    S. Baumberger, C. Lapierre, B. Monties, D. Lourdin and P. Colonna, Preparation and properties of thermally molded and cast lignosulfonates - starch blends, Ind. Crop. Prod. 6, 253–258 (1997).CrossRefGoogle Scholar
  78. 78.
    S. Baumberger, C. Lapierre, B. Monties, and G. Della Valle, Use of Kraft lignin as filler for starch film, Polym. Degrad. Stab. 59, 273–277 (1998).CrossRefGoogle Scholar
  79. 79.
    E. Corradini, E. A. G. Pineda, and A. A. W. Hechenleitner, Lignin - poly(vinyl alcohol) blends studied by thermal analysis, Polym. Degrad. Stab. 66(2), 199–208 (1999).CrossRefGoogle Scholar
  80. 80.
    Z. X. Guo, A. Gandini, and F. Pla, Polyesters from lignin. 1. The reaction of Kraft lignin with dicarboxylic acid chlorides, Polym. Intern. 27, 17–22 (1992).CrossRefGoogle Scholar
  81. 81.
    Z. X. Guo and A. Gandini, Polyesters from lignin. 2. The copolyesterification of Kraft lignin and polyethylene glycols with dicarboxylic acid clhorides, Eur. Polym. J. 27(11), 177–1180 (1991).CrossRefGoogle Scholar
  82. 82.
    O. Faix, New aspects of lignin utilization in large amounts, Das Papier 12, 733–739 (1992).Google Scholar
  83. 83.
    B. B. Boonstra, Fillers: carbon black and non black, in: Rubber Technology, 2 nd Edition, edited by M. Morton (Van Nostrand Reinhold Co., New York, 1973), p. 54.Google Scholar
  84. 84.
    B. B. Boonstra, Reinforcement by fillers, in: Rubber Technology and Manufacture 2 nd Edition, edited by C. M. Blow and C. Hepburn (Butterworths, London, 1982), p. 269.Google Scholar
  85. 85.
    M.A. De Paoli and L. T. Furlan, Sugar cane bagasse lignin as a stabilizer for rubbers: Part H - butadiene rubber, Polym. Degrad. Stab. 13, 129–138 (1985).CrossRefGoogle Scholar
  86. 86.
    Y. G. Kuzmina, The Manufacture and Applications of Filled Compositions Based on Styrene-Polyolefin Copolymers (Niitekhim Publisher, Moscow, 1977), p. 43.Google Scholar
  87. 87.
    D. N. Simmons, Non black fillers and colouring materials, in: Rubber Technology and Manufacture 2 nd Edition, edited by C. M. Blow and C. Hepburn (Butterworths, London, 1982) p. 219.Google Scholar
  88. 88.
    S. I. Falkehag, Lignin in materials, Applied Polymer Symposium 28, 247–257 (1975).Google Scholar
  89. 89.
    J. J. Lindberg, T. A. Kuusela, and K. Levon, Specialty Polymers from Lignin,in: Lignin Properties and Materials, edited by W. G. Glasser and S. Sarkanen (ACS Symposium Series 397, Washington, 1989), pp. 190–204.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Dorel Feldman
    • 1
  1. 1.Department of Building, Civil and Environmental EngineeringConcordia UniversityMontrealCanada

Personalised recommendations