X-Ray Characterization of CuPt Ordered III–V Ternary Alloys

  • Jianhua Li

Abstract

A quantitative model, based on x-ray diffraction, is proposed to analyze the CuPt ordered III-V ternary semiconductor alloy films. The model takes into account the size distribution of the two different laminae-shaped variants, the random distribution of the anti-phase domain boundaries, and the atomic displacements due to the bond length difference between the two constitutive binary materials. The model enables us to extract quantitatively the structural information of the ordered films from the x-ray diffraction data.

Key Words

X-ray diffraction order parameter reciprocal area map anti-phase boundary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Holý, U. Pietsch, and T. Baumbach, High resolution X-ray Scattering From Thin Films and Multilayers, (Springer, New York, 1999).Google Scholar
  2. 2.
    T. Suzuki, T. Ichihashi, and T. Nakayama, Appl. Phys. Lett. 73, 2588 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    B.A. Philips, A.G. Norman, T.Y. Seong, S. Mahajan, G.R. Booker, M. Skowronski, J.P. Harbinson, and V.G. Keramidas, J. Cryst. Growth 140, 249 (1994).ADSCrossRefGoogle Scholar
  4. 4.
    A. Gomyo, K. Makita, I. Hino, and T. Suzuki, Phys. Rev. Lett. 72, 673 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    C.S. Baxter, W.M. Stobbs, and J.H. Wilkie, J. Cryst. Growth 112, 373 (1991), and references therein.ADSCrossRefGoogle Scholar
  6. 6.
    J.-J. Yang, R. Spirydon, T.-Y. Seong, S.H. Lee, and G.B. Stringfellow, J. Electron. Mater. 27, 1117 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    D. Munzer, E. Dobrocka, I. Vavra, R. Kudela, M. Harvanka, N.E. Christensen, Phys. Rev. B 57, 4642 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    B.E. Warren, X-ray diffraction, (Dover, 1990).Google Scholar
  9. 9.
    D.C. Meyer, K. Richter, and P. Paufler, Phys. Rev. B 59, 15253 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    L. Alagna, T. Properi, S. Turchini, C. Ferrari, L. Francesio, and P. Franzosi, J. Appl. Phys. 83, 3552 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    E. Morita, M. Ikeda, O. Kumagai, and K. Kaneko, Appl. Phys. Lett. 53, 2164 (1988).ADSCrossRefGoogle Scholar
  12. 12.
    G.S. Chen, D.H. Jaw, and G.B. Stringfellow, J. Appl. Phys. 69, 4263 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Cai and M.F. Thorpe, Phys. Rev. B {\bf }, 15872 (1992); Phys. Rev. B 46, 15879 (1992).ADSGoogle Scholar
  14. 14.
    J. S. Chung and M.F. Thorpe, Phys. Rev. B 55, 1545 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    J.Y. Tsao, Materials Fundamentals of Molecular Beam Epitaxy,(Academy Press, San Diego, 1993), chapter 4.Google Scholar
  16. 16.
    A.-B. Chen and A. Sher, Semiconductor Alloys, (Plenum Press, New York, 1995).Google Scholar
  17. 17.
    S. Adachi, Physical Properties of 111-V Semiconductor Compounds, (Wiley, New York, 1992).CrossRefGoogle Scholar
  18. 18.
    S. Adachi, Properties of Aluminum Gallium Arsenide, (INSPEC, London, 1993).Google Scholar
  19. 19.
    Y. Zhang, A. Mascarenhas, S.P. Ahrenkiel, D.J. Friedman, J.F. Geisz, and J.M. Olsen, Solid State Commun 109, 99 (1999).CrossRefGoogle Scholar
  20. 20.
    R.L. Forrest, J. Kulik, T.D. Golding, and S.C. Moss, J. Mater. Res. 15, 45 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    D.H. Jaw, G.S. Chen, and G.B. Stringfellow, Appl. Phys. Lett. 59, 114 (1991).ADSCrossRefGoogle Scholar
  22. 22.
    Y. Zhang, B. Fluegel, S.P. Ahrenkiel, D.J. Friedman, J.F. Geisz, J.M. Olsen, and A. Mascarenhas, 1999 MRS Fall Meeting Proceedings.Google Scholar
  23. 23.
    L.C. Su, I.H. Ho, and G.B. Stringfellow, J. Appl. Phys. 75, 5135 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    I.J. Murgatroyd, A.G. Norman, and G.R. Booker, J. Appl. Phys. 67, 2310 (1990).ADSCrossRefGoogle Scholar
  25. 25.
    T. Suzuki and A. Gomyo, J. Cryst. Growth 93, 396 (1988).ADSCrossRefGoogle Scholar
  26. 26.
    A. Gomyo, T. Suzuki, and S. Iijima, Phys. Rev. Lett. 60, 2645 (1988).ADSCrossRefGoogle Scholar
  27. 27.
    T.-Y. Seong, A.G. Norman, G.R. Booker, and A.G. Cullis, J. Appl. Phys. 75, 7852 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    M. Greenholz and A. Kidron, Acta, Cryst. A 26, 311 (1970).CrossRefGoogle Scholar
  29. 29.
    R.L. Forrest, T.D. Golding, S.C. Moss, Z. Zhang, J. F. Geisz, J.M. Olsen, A. Mascarenhas, P. Ernst, and C. Geng, Phys. Rev. B 58, 15355 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    C.S. Baxter and W.M. Stobbs, Phil. Mag. A 69, 615 (1994).ADSCrossRefGoogle Scholar
  31. 31.
    S. Matsumura, K. Takano, N. Kuwano, and K. Oki, J. Cryst. Growth 115, 194 (1991).spADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Jianhua Li
    • 1
  1. 1.Physics DepartmentUniversity of HoustonUSA

Personalised recommendations