Skip to main content

Boron-Binding-Biomolecules: a Key to Understanding the Beneficial Physiologic Effects of Dietary Boron from Prokaryotes to Humans

  • Chapter
Boron in Plant and Animal Nutrition

Abstract

Boron is an essential element for plants (Lovatt, 1985) and embryological development in fish (Rowe and Eckert, 1999) and frogs (Fort et al., 1999) does not proceed normally in the absence of extracellular boron. There is evidence that higher animals (Hunt and Idso, 1999; Armstrong et al., 2000) and humans (Hunt et al., 1997; Nielsen et al., 1992; Travers et al., 1990) require physiological amounts of boron to support normal biological functions. Despite the progress made in studies of boron essentiality for both plants and animals, the biochemical mechanisms responsible for the beneficial physiologic effects of boron across the phylogenetic spectrum are poorly understood. However, the unique nature of boron biochemistry suggests specific lines of investigation. This review summarises some of the progress made in understanding the essential roles of boron at the molecular level.

The U.S Department of Agriculture, Agricultural Research Service, Northern Plains Area, is an equal opportunity/affirmative action employer and all agency services are available without discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albersheim, P., An, J., Freshour, G., Fuller, M.S., Guillen, R., Ham, K.S., Hahn, M.G., Huang, J., O’Neill, M., Whitcombe, A., et al., 1994, Structure and function studies of plant cell wall polysaccharides. Biochem. Soc. Trans. 22: 374–378.

    PubMed  CAS  Google Scholar 

  • Armstrong, T.A., Spears, J.W., Crenshaw, T. D., and Nielsen, F.H., 2000, Boron supplementation of a semipurified diet for weanling pigs improves feed efficiency and bone strength characteristics and alters plasma lipid metabolites. J. Nutr.139: 2575–2581

    Google Scholar 

  • Bachovchin, W.W., Wong, W.Y.L., Farr-Jones, S., Shenvi, A.B., and Kettner, C.A., 1988,Nitrogen-15 NMR spectroscopy of the catalytic-triad histidine of a serine protease in peptide boronic acid inhibitor complexes. Biochem. 27:7689–7697.

    Article  CAS  Google Scholar 

  • Bauer, C.-A., and Pettersson, G., 1974, Effect of boric acid on the catalytic activity of Streptomyces griseus Protease 3. Eur. J. Biochem. 45: 473–477.

    Article  PubMed  CAS  Google Scholar 

  • Bell, C.F., Beauchamp, R.D., and Short, E.L., 1986, A study of the complexes of borate ions and some cyclitols using 11B-N.M.R. spectroscopy. Carbohydrate Res. 147: 191–203.

    Article  CAS  Google Scholar 

  • Berezin, I.V., Vill, K.H., Martinek, K., and Yatsimirshii, A.K., 1967, Reversible inactivation of a-chymotrypsin resulting from interaction of Cu++ ions with the imidazole group of a histidine residue. Molek. Biol. 1: 719–728.

    CAS  Google Scholar 

  • Berry, S.C. Fink, A.L., Shenvi, A.B., and Kettner, C.A., 1988, Interaction of peptide boronic acids with elastase: circular dichroism studies. Proteins: Structure, Function, and Genetics 4: 205–210.

    Article  CAS  Google Scholar 

  • Chen, T.S.S., Chang, C.-J., and Floss, H.G., 1979: Biosynthesis of the boron-containing macrodiolide antibiotic aplasmomycin. J. Am. Chem. Soc.101: 5826–5827.

    Article  CAS  Google Scholar 

  • Cotton, F.A., and Wilkinson, G., 1972, Advanced Inorganic Chemistry (Interscience Publishers, Div. of John Wiley & Sons, New York.

    Google Scholar 

  • Coyle, T.D. and Stone, F.G.A., 1964, In Progress in Boron Chemistry, H. Steinberg, A. McCloskey, eds., Macmillan Co., New York, 1964, pp. 83–165.

    Google Scholar 

  • Dugger, W.M., Humphreys, T.E., and Calhoun, B., 1957, The influence of boron on starch phosphorylase and its significance in translocation of sugars in plants. Plant Physiol 32: 364–370.

    Article  PubMed  CAS  Google Scholar 

  • Fort, D.J. Stover, E.L., Strong, P.L., Murray, F.J., and Keen, C.L., 1999, Chronic feeding of a low boron diet adversely affects reproduction and development in Xenopus laevis. J. Nutr. 129: 2055–2060.

    PubMed  CAS  Google Scholar 

  • Garbett, K., Darnall, D.W., and Klotz, I.M., 1971, The effects of bound anions on the reactivity of residues in hemerythrin. Arch. Biochem. Biophys. 142: 455–470.

    Article  PubMed  CAS  Google Scholar 

  • Gerrard, W., 1961, The Organic Chemistry of Boron. Academic Press, London.

    Google Scholar 

  • Greenwood, N.N. and Earnshaw, A., 1984, Chemistry of the Elements, Pergamon Press, Oxford, Great Britain.

    Google Scholar 

  • Greenwood, N.N., 1973, In: Comprehensive Inorganic Chemistry, J.J. Bailar, H. Emeléus, R. Nyholm, A. Trotman-Dickenson, eds., Pergamon Press Ltd., Oxford, 1973, pp. 665–990.

    Google Scholar 

  • Gunther Sillero, M.A., and Caeselle, J.C, 1992, In Ap4A and other dinucleoside polyphosphates. A.G. McLennan, ed., CRC Press, Boca Raton, pp. 205–229.

    Google Scholar 

  • Hausdorf, G., Krüger, K., Küttner, G., Holzhütter, H.-G., Frömmel, C, and Höhne, W.E., 1987, Oxidation of a methionine residue in subtilisin-type proteinases by the hydrogen peroxide/borate system- -an active site- directed reaction. Biochim. Biophys. Acta 952: 20–26.

    Article  Google Scholar 

  • Hu, H., Penn, S.G., Lebrilla, C.B., and Brown, P.H., 1997, Isolation and characterization of soluble B-complexes in higher plants. Plant Physiol. 113: 649–655.

    Article  PubMed  CAS  Google Scholar 

  • Hunt, C.D. and Idso, J.P., 1999, Dietary boron as a physiological regulator of the normal inflammatory response: a review and current research progress. J. Trace Elem.Exp.Med. 12:221–233.

    Article  CAS  Google Scholar 

  • Hunt, C.D., Herbel, J.L., and Nielsen, F.H., 1997, Metabolic response of postmenopausal women to supplemental dietary boron and aluminum during usual and low magnesium intake: boron, calcium, and magnesium absorption and retention and blood mineral concentrations. Am. J. Clin. Nutr. 65: 803–813.

    PubMed  CAS  Google Scholar 

  • Johnson, S.L. and Smith, K.W., 1976, The interaction of borate and sulfite with pyridine nucleotides. Biochemistry 15: 553–559.

    Article  PubMed  CAS  Google Scholar 

  • Kettner, C.A., and Shenvi, A.B., 1984, Inhibition of the serine proteases leukocyte elastase, pancreatic elastase, cathepsin G, and chymotrypsin by peptide boronic acids. J. Biol. Chem. 259: 15106–15114.

    PubMed  CAS  Google Scholar 

  • Kettner, C.A., Bone, R., Agard, D.A., and Bachovchin, W.W., 1988, Kinetic properties of the binding of alpha-lytic protease to peptide boronic acids. Biochem. 27: 7682–7688.

    Article  CAS  Google Scholar 

  • Kohno, J., Kawahata, T., Otake, T., Morimoto, M., Mori, H., Ueba, N., Nishio, M., Kinumaki, A., Komatsubara, S., and Kawashima, K., 1996, Boromycin, an anti-HIV antibiotic, Biosci. Biotechnol. Biochem. 60: 1036–1037.

    Article  PubMed  CAS  Google Scholar 

  • Kolodny, N.H., and Collins, L.J., 1986, Proton and phosphorus-31 NMR study of the dependence of diadenosine tetraphosphate conformation on metal ions. J. Biol. Chem. 261: 14571–14577.

    PubMed  CAS  Google Scholar 

  • Kozarich, J.W., 1988, S-adenosylmethionine-dependent enzyme activation. Biofactors 1: 123–128.

    PubMed  CAS  Google Scholar 

  • Loomis, W.D., and Durst, R.W., 1991, Boron and cell walls. Curr. Topics Plant Biochem. Physiol. 10: 149–178.

    CAS  Google Scholar 

  • Loomis, W.D. and Durst, R.W., 1992, Chemistry and biology of boron. BioFactors 3: 229–239.

    PubMed  CAS  Google Scholar 

  • Lovatt, C.J., 1985, Evolution of xylem resulted in a requirement for boron in the apical meristems of vascular plants. New Phytol. 99: 509–522.

    Article  CAS  Google Scholar 

  • Nielsen, F.H., Gallagher, S.K., Johnson, L.K., and Nielsen, E.J., 1992, Boron enhances and mimics some effects of estrogen therapy in postmenopausal women. J. Trace Elem. Exp. Med. 5: 237–246.

    CAS  Google Scholar 

  • Ogilvie, A., 1992: In Ap4A and other dinucleoside polyphoshates. A.G. McLennan, ed., CRC Press, Boca Raton, pp. 229–275.

    Google Scholar 

  • Power, P.P. and Woods, W.G., 1997, The chemistry of boron and its speciation in plants, Plant Soil 193:1–13.

    Article  CAS  Google Scholar 

  • Ralston, N.V.C., and Hunt, C.D., 2001, Diadenosine phosphates and S-adenosylmethionine: novel boron binding biomolecules detected by capillary electrophoresis. Biochim. Biophys. Acta (In press).

    Google Scholar 

  • Raven, J.A., 1980, Short- and long-distance transport of boric acid in plants. New Phytol. 84: 231–249.

    Article  CAS  Google Scholar 

  • Rowe, R.I. and Eckhert, C.D., 1999, Boron is required for zebrafish embryogenesis. J. Exp. Biol. 202: 1649–1654.

    PubMed  CAS  Google Scholar 

  • Sato, K., Okazaki, T., Maeda, K., Maeda, K., and Okami, Y., 1978, New antibiotics, aplasmomycins B and C. J. Antibiotics 31: 632–635.

    Article  CAS  Google Scholar 

  • Schummer, D., Irschik, H., Reichenbach, H., and Höfle, G., 1994, Antibiotics from gliding bacteria, LVII. Tartrolons: new boron-containing macrodiolides from Sorangium cellulosum. Liebigs Ann. Chem. 1994: 283–289.

    Article  Google Scholar 

  • Scudi, J.V., Bastedo, W.A., and Webb, T.J., 1940, The formation of a vitamin B6-borate complex. J. Biol. Chem. 136: 399–406.

    CAS  Google Scholar 

  • Smith, K.W. and Johnson, S.L., 1976, Borate inhibition of yeast alcohol dehydrogenase. Biochem. 15: 560–565.

    Article  CAS  Google Scholar 

  • Spivack, A.J., and Edmond, J.M., 1987, Boron isotope exchange between seawater and the oceanic crust. Geochim. Cosmochim. Acta 51: 1033–1043.

    Article  CAS  Google Scholar 

  • Thellier, M., Duval, Y., and Demarty, M., 1979, Borate exchanges of Lemna minor L. as studied with the help of the enriched stable isotopes and of a (n, alpha) nuclear reaction. Plant Physiol. 63: 283–288.

    Article  PubMed  CAS  Google Scholar 

  • Travers, R.L., Rennie, G.C, and Newnham, R.E., 1990, Boron and arthritis: the results of a double-blind pilot study. J. Nutr. Med. 1: 127–132.

    Article  Google Scholar 

  • Van Duin, M., Peters, J.A., Kieboom, A.P.G., and Van Bekkum, H., 1984, Studies on borate esters I. The pH dependence of the stability of esters of boric acid and borate in aqueous medium as studied by 11B NMR. Tetrahedron 40: 2901–2911.

    Article  Google Scholar 

  • Weser, U. 1967, In: Structure and Bonding, C. Jorgensen, J. Neilands, R. Nyholm, D. Reinen, R. Williams, eds., Springer-Verlag, New York, pp. 160–180.

    Chapter  Google Scholar 

  • Zittle, C.A., 1951, In: Advances in Enzymology, F. Ford, ed., Interscience Publishers, New York, 1951, pp. 493–527.

    Google Scholar 

  • Zubay, G., 1988, Biochemistry. Macmillan, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hunt, C.D. (2002). Boron-Binding-Biomolecules: a Key to Understanding the Beneficial Physiologic Effects of Dietary Boron from Prokaryotes to Humans. In: Goldbach, H.E., Brown, P.H., Rerkasem, B., Thellier, M., Wimmer, M.A., Bell, R.W. (eds) Boron in Plant and Animal Nutrition. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0607-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0607-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5155-9

  • Online ISBN: 978-1-4615-0607-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics