An Axiomatic Approach to Some Biological Themes

  • Marco Forti
  • Paolo Freguglia
  • Lodovico Galleni

Abstract

In this paper we continue the enterprise of elaborating an axiomatic framework suitable for modern Biology, started in 1,2,3. We isolate and propose to the attention of the scientific community a few axioms expressing some basic biological facts and their theoretical interpretations. We hope we can foster criticism and contributions from researchers of any field of the Natural Sciences. In fact, we conceive this paper as part of a general research programme on the Foundations of Science, originated in the Eighties by E. De Giorgi at the Scuola Normale Superiore, Pisa and carried on by several researchers after his death in 1996 (see 4,5,6,7,8). The aim of this programme is not to provide safe and unquestionable grounds to scientific activity, but rather to develop conceptual environments where this activity can be carried out naturally and without artificial constraints, and the notions considered in various disciplines can be presented in a simple and clear-cut way, so as to allow for both a deeper analysis by researchers in the field, and a proficuous interdsciplinary debate.

Keywords

Sugar Manifold Lution Alcuni Vicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Galleni, M. Forti - An axiomatization of biological concepts within the foundational theory of Ennio De Giorgi.Biology Forum 92(1999), 77–104.Google Scholar
  2. 2.
    L. Galleni, M. Forti - Un’assiomatizzazione di alcuni concetti della Biologia nell’ambito delle teorie fondazionali di E. De Giorgi,in La Matematizzazione della Biologia: Storia e Problematiche Attuali - Atti del I workshop di Arcidosso, 31/VIII-3/IX 1997(P. Cerrai and P. Freguglia, eds.). QuattroVenti, Urbino 1999, 119–132.Google Scholar
  3. 3.
    L. Galleni, M. Forti -Un’assiomatizzazione della genetica all’interno della teoria dei fondamenti di Ennio De Giorgi.Quad. C.I.S.S.C.3, Pisa 2000.Google Scholar
  4. 4.
    E. De Giorgi, M. Forti, G. Lenzi - Una proposta di teorie base dei Fondamenti della Matematica.Rend. Mat. Acc. Lincei(9)5(1994), 11–22.MATHGoogle Scholar
  5. 5.
    E. De Giorgi, M. Forti, G. Lenzi - Verso i sistemi assiomatici del 2000 in Matematica, Logica e Informatica, inNuova Civiltà delle Macchine 57-60(1997), 248–259.Google Scholar
  6. 6.
    M. Forti, F. Honsell, M. Lenisa - Operations, ollections and sets within a general axiomatic framework, in Logic and Foundations of Mathematics (A. Cantini, E. Casari and P. Minari, eds.).Synthèse Library 280, Kluwer, Dordrecht 1999, 1–24.Google Scholar
  7. 7.
    M. Forti, G. Lenzi - A General Axiomatic Framework for the Foundations of Mathematics, Logic and Computer Science.Rend. Acc. Naz. Sci. XL, Mem. Mat. Appl. 21(1997), 171–207.MathSciNetGoogle Scholar
  8. 8.
    M. Forti - The Foundational Theories of Ennio De Giorgi,Aquinas 43(2000), 355–367.Google Scholar
  9. 9.
    J. H. Woodger - The Axiomatic Method in Biology, Cambridge Univ. Press, Cambridge 1937.MATHGoogle Scholar
  10. 10.
    J. H. Woodger - Studies in foundations of Genetics, in The Axiomatic Method (L. Henkin, P. Suppes, A. Tarski, eds.), North Holland, Amsterdam 1959, vol.4, 8–428.Google Scholar
  11. 11.
    V. Volterra - Sui tentativi di applicazione delle matematiche alle scienze biologiche e sociali,Giornale degli Economisti 23(1901), 3–28.Google Scholar
  12. 12.
    P. Freguglia - Considerazioni sul modello di Giovanni V. Schiaparelli per una interpretazione geometrica delle concezioni darwiniane,Atti Mem. Acc. Naz. Sci. Lett Arti Modena(7)14(1996-97).Google Scholar
  13. 13.
    P. Freguglia - Per una teoria assiomatica delle concezioni darwiniane, I, in La Matematizzazione della Biologia: Storia e Problematiche Attuali - Atti del I workshop di Arcidosso, 31/VIII-3/IX 1997 (P. Cerrai and P. Freguglia, eds.). QuattroVenti, Urbino 1999, 107–118.Google Scholar
  14. 14.
    M. Forti, F. Honsell, M. Lenisa - An axiomatization of partial n-place operations.Math.-Struct. Computer Sci. 7(1997), 283–302.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    E. Be Giorgi, M. Forti, G. Lenzi - Introduzione delle variabili nel quadro delle Teorie Base dei Fondamenti della Matematica, Rend. Mat. Acc. Lincei (9) 5 (1994), 117–128.MATHGoogle Scholar
  16. 16.
    M. Forti, F. Honsell - Positive qualities and the ontological argument.Ricerche di Matematica 49(2000),Supplemento, 61–78.MathSciNetMATHGoogle Scholar
  17. 17.
    B. E. Wilson - A (not-so-radical) solution to the species problem,Biology and Philosophy 10 (1995), 339–356.CrossRefGoogle Scholar
  18. 18.
    B. Continenza - La specie: definire l’lndefinibile?, inGiochi Aperti in Biologia(B. Continenza, E. Gagliasso, eds.), Angeli, Milano, 1996, 93–191.Google Scholar
  19. 19.
    M. T. Ghiselin Metaphysics and the Origin of Species,S.U.N.Y. Press, New York 1997.Google Scholar
  20. 20.
    G. V. Schiaparelli -Studio Comparativo tra le Forme Orgamiehe Naturali e le Forme Geometriche Pure, Hoepli, Milano 1898.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Marco Forti
    • 1
  • Paolo Freguglia
    • 2
  • Lodovico Galleni
    • 3
  1. 1.Dip. Matematica Applicata “U. Dini”Università di PisaPisaItalia
  2. 2.Dip. Matematica Pura e ApplicataUniversità dell’AquilaL’AquilaItalia
  3. 3.Centro Interd. per lo Studio dei Sistemi ComplessiUniversità di PisaPisaItalia

Personalised recommendations