Skip to main content

Mathematisation of the Science of Motion and the Birth of Analytical Mechanics: A Historiographical Note

  • Chapter
The Application of Mathematics to the Sciences of Nature

Abstract

Usually, one speaks of mathematization of a natural or social science to mean that mathematics comes to be a tool of such a science: the language of mathematics is used to formulate its results, and/or some mathematical techniques is employed to obtain these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. L. Lagrange, Mechanique analitique, La veuve Desaint, Paris (1788); IInd ed., Mecanique analytique, Coureier, Paris, 2 vols. 1811–1815

    Google Scholar 

  2. C. Tlruesdell, Essays in the History of Mechanics, Springer-Verlag, Berlin, Heidelberg, New York (1968). p. 134. (“A Program toward Rediscovering the Rational Mechanics of the Age of Reason”, first publication in 1960, Archive for History of Exact Sciences, 1,1960-1962, 3-36).

    Chapter  Google Scholar 

  3. C. Truesdell, A First Course in Rational Continuum Mechanics, vol. 1, p 9, Academic Press, New York, San Francisco, London (1977).

    Google Scholar 

  4. Ref 2, p. 335 (“Recent Advances in Rational Mechanics”, first published, in a different version in Science, 127,1958, pp. 729-739).

    Google Scholar 

  5. Ref 3, vol. I, p- 4. As Truesdell explicitly remarks the term “things” refers here to natural things (as animals, plants, seas, minerals, planets, etc.) and man's artifices.

    Google Scholar 

  6. Ref 2, p. 335 (“Recent Advances [...]”, op. cit.)

    Google Scholar 

  7. I. Newton, Philosophiae naturalis principia. mathematiaca [...], Jussu Soc. Regiae ac Typis J. Streatner, Londini (1687); Praefatio ad lectorem, first page [not numerated], 2nd. ed., without publisher, Catabrigaiæ 1713; 3th ed., apud G. and J. Innys, Londini, (1726).

    Google Scholar 

  8. Ref 2, p. 133-134 (“A Program [...]”, op. cit.)

    Google Scholar 

  9. Ref 7, Præfatio ad lectorem, first page [not numerated]

    Google Scholar 

  10. L. Euler, Mechanica, she motus scientia analytice expasita, ex typ. Acad. sci. imp., Petropoli, 2 vols. (1736).

    Google Scholar 

  11. Ref. 2 p. 106 (“A Program [...]”, op. cit.).

    Google Scholar 

  12. M. Blay, La naissance de la mechanique analytique. La science du mcuvement au tournat desXVIIème et XVIIIème sièle, PUF, Paris (1992).

    Google Scholar 

  13. Ref 12, p. 8.

    Google Scholar 

  14. Ref 12, pp. 153-221 and 277-321, where a complete bibliography of Varignon's papers on this subjects is given.

    Google Scholar 

  15. D. Bertoloni-Meli, Equivalence and Priority: Newton versus Leibniz, pp. 201–205Clarendon Press, Oxford (1993).

    Google Scholar 

  16. C. Fraser, “Classical mechanics”, in I. Grattan-Guinness (ed. by), Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences, particularly pp. 973–975 Routledge, London and New York (1994), 2 vols. with continued pagination, pp. 971-986

    Google Scholar 

  17. Ref 16., p. 974.

    Google Scholar 

  18. L. Euler, “Decouverte d'un nouveau principe de mécanique”, Mem. Acad. Sci. Berlin, 6 (1750, publ. 1752), pp. 185–217. Note that in this paper, Euler presents the Nawton's law (in his new formulation) as a “new principle of mechanics” that he pretends to have discovered. Lots of papers have been written on the subject of Newton's second Law where distinct interpretation of it and of its role and meaning in the Principia are discussed. Among the more recent ones, cf. ref 19: Verlet where a large bibliography is given.

    Google Scholar 

  19. L. Verlet, “F=ma and the Newtonian Revolution: an Exit from Religion through Religion”, History of Science, 34 (1996), pp. 303–346.

    MathSciNet  Google Scholar 

  20. Aristotle, Physics , in Aritoteles graece, ex recensione I. Bekkeri, editit Academia Regia Borusica, apud G. Reinerium, Berolini, 1831,2 vols., vol. I, pp. 184–267

    Google Scholar 

  21. M. Panza, “Dalla metafisica del moto alia scienza matematica della natura. Considerazioni critiche a proposito di alcuni problemi cinematici trecenteschi”, in L. Bianchi (ed. by), Filosofia e teologia nel trecento. Studi in ricordo di Eugenio Randi, édité par la Fédération Internationale des Instituts d'Etudes Médiévales, Louvain la Neuve (1994), pp. 413–478.

    Google Scholar 

  22. H. Carteron, La notion de force dans le systhéme d'Aristotle, p. 211 Vrin (Paris), (1923).

    Google Scholar 

  23. Ref 20,192b 21

    Google Scholar 

  24. Ref. 20,219b 2.

    Google Scholar 

  25. Ref20,250a4.

    Google Scholar 

  26. E. Giusti, “Galilei e le leggi del moto”, in G. Galilei, Discorsi e dimostrazioni matematiche intorno a due nuove scienze.,,, p. XIII ed. by E. Giusti, Einaudi, Torino (1990), pp. IX–LX

    Google Scholar 

  27. Ref. 26, p. XXIII.

    Google Scholar 

  28. M. Clagett, The Science of Mechanics in the Middle Ages, Univ. of Wisconsin Press, Madison, Wisconsin (1959).

    MATH  Google Scholar 

  29. Ref 28 pp. 238 e 241-42 [doc. 4.4. (“William Heytesbury, Rules for Solving Sophisms”), 14-17 e 89-97].

    Google Scholar 

  30. M. Clagett, Nicolas Oresme and the Medieval Geometry of Qualities and Motion. A Treatise on on Uniformity and Difformity of Intensities Known as Tractatus de configurationibus qualitatum et motum (Edited with an Introduction, English Transaltion and Commentary by M. Clagett), The Univ. of Wisconsin Press, Madison, Milwaukee, London (1968).

    Google Scholar 

  31. Ref 21 for discussion of Heytesbury's proof.

    Google Scholar 

  32. G. Galilei, Dialogo [...] sopra i dm Massimi Sitemi del Monado [...], G. B. Landini, Fiorenza (1632) [in G. Galilei, Le Opere, Ed. Nat., a cura di A. Favaro, Barbera, Firenze 20 voll., 2th Giornata (Ed. Nat., pp. 254-256) 1890-1909, vol. VII]

    Google Scholar 

  33. G. Galilei, Discorsi e dimstrazioni matematiche intorno a due nuove scienze..., Appresso gli Esevirii, Leida, 3th Giornata (Ed. Nat, pp. 208–209). (1638) [in G. Galilei, Le Opere, cit., vol. VIII].

    Google Scholar 

  34. E. Giusti, Euclides] reformatus. La teoria delle proporzioni nella scuola galileiana, Bollati Boringhieri, Torino (1993).

    Google Scholar 

  35. E. Giusti, “Aspetti matematici della cinematica galileiana”, Bollettino di storia delle scienze matematiche, 1, p. XXIII (1981), 2, pp. 3–42.

    Google Scholar 

  36. Ref 26 pp. XIII-XLVII.

    Google Scholar 

  37. Ref 26, pp. XXIX-XXX

    Google Scholar 

  38. Ref 35,pl9.

    Google Scholar 

  39. R. Descartes, La Géométrie, in R. Descartes, Discours de la Methode [... ]. pp. 297–298 Plus la Dioptrique. Les Météores. Et la Géométrie qui sont des essaies de cette Méthode, I. Maire, Leyde (1637), pp. 295-413

    Google Scholar 

  40. N. H. Bos and K. Reich, “Der Doppelte Auftakt zur frühneuzeitlichen Algebra: Viète und Descartes”, in E. Scholz (ed. by), Geschichte der Algebra, Wissenschaftverlag, Mannheim, Wien, Zurich (1990), pp. 183–234

    Google Scholar 

  41. V. Jullien, Descartes. La Géométrie de 1637), pp. 75–76, PUF, Paris (1996).

    Google Scholar 

  42. Ref 34 p. 169.

    Google Scholar 

  43. M. Panza, “Quelques distinctions a l'usage de l'historiographie des mathematiques”, in J.-M. Salanskis, F. Rastier, R. Seeps (ed.), Herméneutique: textes, sciences, P.U.F., Paris (1997), pp. 357–383.

    Google Scholar 

  44. J. W. Herivel, The Background of Newton's Principia. A Study od Newton's Dynamical Researches in the Years 1664-1684, Clarendon Press, Oxford (1965).

    Google Scholar 

  45. D. T. Whiteside, “Newtonian Dynamics”, History of Sciences, 5 (1966).

    Google Scholar 

  46. D. T. Whiteside, “The Mathematical Principles underling Newton's Principia Mathematica”, Journal for the History of Astronomy, 1 (1970), pp. 116–138.

    MathSciNet  Google Scholar 

  47. I. B. Cohen, Introduction to Newton's Principia, Harvard Univ. Press, Cambridge, Mass., (1971).

    MATH  Google Scholar 

  48. F. De Gandt, “Le style mathématique des Principia de Newton”, Revue d'Histoire des Sciences, 39 (1987).

    Google Scholar 

  49. F. De Gandt, Force and Geometry in Newtons's Principia, Princeton Univ. Press, Princeton, (1995).

    Google Scholar 

  50. Les Principia de Newton. Question et commentaires, special issue of the Revue d'histoire des sciences (RVS), 40, 3/4 (1987).

    Google Scholar 

  51. G. Barthélémy, Newton Mécanicien du cosmos, Vrin, Paris (1992).

    Google Scholar 

  52. M. Panza, “Eliminare il tempo: Newton, Lagrange e il problema inverso del moto resistente”, in M. Galuzzi (ed. by), Giornate di storia della matematica (proceedings of the meeting held in Cetraro, September, 8th-12th 1988), Editel, Commenda di Rende, Cosenza (1991), pp. 487-537 (see a discussion of an example of Newton treatment of motion of an isolated body, by comparing it to Lagrange's solution to the same problem

    Google Scholar 

  53. J. Dhombres, “Un style axiomatique dans l'écriture de la physique mathématique au 18éme siéle. Daniel Bernoulli et la composition des forces”, Sciences et Techniques en Perspective, 11 (1986- 1987), pp. 1–38.

    Google Scholar 

  54. J. Dhombres and P. Radelet De Grave, “Contingence et necessité en mecanique. Etude de deux textes inedits de Jean d'Alembert”, Physis, 28 (1991), pp.35–114.

    MATH  Google Scholar 

  55. P. Radelet De Grave, “Daniel Bernoulli et le parallélogramme des forces”, Sciences et Techniques en Perspective, 11 (1987), pp. 1–20.

    Google Scholar 

  56. P. Radelet De Grave, “Les forces et leur loi de composition chez Newton”, Revue Philomphique de Louvain, 86 (1988), p. 505–522,

    Article  Google Scholar 

  57. P. Radelet De Grave, La composition des mouvements, des vitesses et des forces“, in H.-J, Hesse uni F. Nagel (hrsg. von), Der Ambau des Calculus durch Leibniz und die Brüder Bernoulli [...], Studio Leibmtiana, Sonderheft 17 (1989), pp. 25–47.

    Google Scholar 

  58. G. W. Leibniz, “Nova methodus pro maximis et minimis [...]”, Acta Eruditorum (1684), pp. 467–473.

    Google Scholar 

  59. Ref 12 part. l, ch. 3, pp. 63-109, where the necessary bibliographical references are given.

    Google Scholar 

  60. Ref 12, p. 109.

    Google Scholar 

  61. Ref 12 part. II, ch. 1, pp- 113-152, where the necessary bibliographical references are given.

    Google Scholar 

  62. Ref 12 p. 129.

    Google Scholar 

  63. Ref 12, pp. 150 and 152.

    Google Scholar 

  64. Ref 12, part II, ch. 2, pp. 153-221, where the necessary bibliographical references are given.

    Google Scholar 

  65. Ref 12, p. 161.

    Google Scholar 

  66. Ref 15, pp. 208-215, where a bibliography is given for the famous controversy on the inverse problem of central forces.

    Google Scholar 

  67. I. Newton, Philosophiæ naturalis principia mathematiaca, perpetuis Commentariis illustata, communi studio PP. T. Le Seur & F. Jacquier, Barrillot & Filli, 3 toms in 4 vols., 1739-1742 (G).

    Google Scholar 

  68. P. Varignon, “Du mouvement en general partout sorte de courbes, et des forces centrales, tant centrifuge que centripétes, necessaires aux corp qui les décrivent”, Hist. Acad. Roy. Sci. [de Paris], Mem. Math. Phy., (1700, publ. 1703; pres. 31/3/1700), pp. 83–101.

    Google Scholar 

  69. Refl2, pp. 193-213.

    Google Scholar 

  70. Ref 68, p. 85.

    Google Scholar 

  71. Ref 12, pp 197-198.

    Google Scholar 

  72. P. Varignon, “Des mouvements faits das des milieux qui leur resistent en raison quelconque”, Hist. Acad. Roy. Sci. [de Paris], Mem. Math. Phy. (1707, publ. 1708; pres. 13-17/8/1707), pp. 382–476.

    Google Scholar 

  73. Ref 12, pp. 280-299.

    Google Scholar 

  74. Jean Bernoulli, Discours sur les loix de la communication du mouvement [...], C. Jombert, Paris (1727).

    Google Scholar 

  75. M. Otte and M. Panza (ed, by) Analysis and Synthesis in Mathemetics. History and Philsophy, Boston Studies in the Philosophy of Science, 196, Kluwer, Dordrech, Boston, London, (1997).

    Google Scholar 

  76. Ref. 75, M. Panza, “Classical sources for the concepts of analysis and synthesis”, pp. 365-414.

    Google Scholar 

  77. M. Panza, La forma della quantita. Analisi algebrica e analisi superiore: il problema dell'unità della matemetica nel secolo dell'Illuminismo, Cashiers d'Histoire et de Philosophie des Sciences, 38 and 39, Ch. II.2. (1992).

    Google Scholar 

  78. J. B. 1. R. d' Alembert, “Eléments des sciences” (1st part), in Encyclopédie, ou dictionnaire raisonné des sciences, des arts et de métiers, Briasson, David 1'ainé, le Breton, Durand, Paris, 1751-1780, 35 vols., vol. V, 1755, pp. 491a–497a.

    Google Scholar 

  79. M. Panza, “De la nature épargante aux forces généreuses : le principe de moindre action entre mathématiques et métaphysique. Maupertuis et Euler, 1740, 1751”, Revue d'histoire des Sciences, 48 (1996), pp. 435–520.

    Article  MathSciNet  Google Scholar 

  80. M. Panza, “Die Entstehung der analytischen Medianik im 18. Jahrhundert”, in H. N. Jahnke (Hrsg.), Geschichte der Analysis, Spektrum Akad. Verl., Heidelberg, Berlin (1999), pp. 171–190.

    Chapter  Google Scholar 

  81. I. Kant, Kritik der reinen Vernunft, Hartknoch, Riga, 1787; ibid., vol. III, 1911, pp. 1–552 (B).

    Google Scholar 

  82. I. Kant, Kritik der reinen Vernunft, Hartknoch, Riga, 1781; the pages 1 -405 are in Kant's gesammelte Schriften (herausg. von de Königlich Preukischen Akademie der Wissenschaften; after: Deutsche Academie der Wissenschaften zu Berlin; after: Academie der Wissenschaften der D.D.R.), G. Reimer and (from 1922) W. De. Gruyter, Berlin (1900-...), vol. IV, 1911, pp. 1-252 (A).

    Google Scholar 

  83. M. Panza, “De la nature épargante aux forces géneréuses : le principe de moindre action entre mathématiques et métaphysique. Maupertuis et Euler, 1740, 1751”, Revue d'histoire des Sciences, 48 (1996), pp. 435–520.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Panza, M. (2002). Mathematisation of the Science of Motion and the Birth of Analytical Mechanics: A Historiographical Note. In: Cerrai, P., Freguglia, P., Pellegrini, C. (eds) The Application of Mathematics to the Sciences of Nature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0591-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0591-4_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5147-4

  • Online ISBN: 978-1-4615-0591-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics