Skip to main content

The History of Theoretical Population Ecology: Which Role for Mathematical Modeling?

  • Chapter

Overview

The use of mathematics in biology has always been controversial. At variance with economics, which became a formalized discipline quite early in its development, biologists had always been suspicious about the use of formal models in their field. During the now long history of bio-mathematics, supporters of this approach have devised quite a large number of arguments to persuade skeptics that the marriage between mathematics and biology was a good deal for both disciplines. Beside the obvious reason that formal models lead, hopefully, to quantitative predictions that are easier to falsify, mathematical’ models have been frequently defended because of their (alleged) heuristic value. According to this view, mathematical models’ most important contribution to biology consists in their ability to highlight some phenomena, or some relationships among phenomena, that could not be understood without formalization, A very clear defense of this point of view is to be found in one of the early classics of mathematical population ecology, Vito Volterra’s “Variazioni e fluttuazioni del numero d’individui in specie animali conviventi”, first published in 1926.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vito Volterra, Variazioni e fluttuazioni del numero d’individui in specie animali conviventi, Memorie del Regio Comitato Talassografico Italiano, CXXXI (1927), English trans, in F. M. Scudo and J. R. Ziegler, The Golden Age of Theoretical Ecology; 1923-1940, Spring Verlag, Berlin (1978).

    Google Scholar 

  2. Vito Voiterra and Umberto D'Ancona, Les associations biologiques au point de vue mathématique, Hermann, Paris (1935).

    Google Scholar 

  3. Karl Sigmund, Games of Life: Explorations in Ecology, Evolution and Behaviour, Oxford University Press, Oxford (1993), 2nd edition Penguin Books (1996).

    Google Scholar 

  4. Luciano Andreozzi, Vito Volterra and Umberto D'Ancona on the effects of fishing in the Upper Adriatic Sea and their mathematical representation. Reflections on a celebrated episode in the history of population ecology, forthcoming on Sciences. et Techniques en Perspective.

    Google Scholar 

  5. John Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, Cambridge (19S2).

    Google Scholar 

  6. Ernst Mayr, The Growth of Biological Thought, Harvard University Press, Cambridge (Mass.) (1982).

    Google Scholar 

  7. Ernst Mayr, Where are We. Genetics and Twentieth Century Darwinism, Cold Spring Harbor Symposia on Quantitative Biology, 24: 1–14 (1959).

    Article  Google Scholar 

  8. Ernst Mayr, Evolution and the Diverisy of Life, Belknap Press, Cambridge (Mass.) and London (1976).

    Google Scholar 

  9. C. H. Waddington, Epigenetics and evolution, in Symposia of the Society of Experimental Biology, 7, Academic Press, New York (1953).

    Google Scholar 

  10. William B. Provine, Mole of mathematical population geneticists in the evolutionary synthesis of the 1930’s and 40’s, in L. Solomon, Mathematical Models in Biological Discovery, Lecture notes in Biomathematics, Springer-Verlag, Berlin Heidelberg (1977).

    Google Scholar 

  11. Francesco M. Scudo and James R. Ziegler, The Golden Age of Theoretical Ecology: 1923–1940, Springer Verlag, Berlin (1978).

    Chapter  Google Scholar 

  12. Sharon E. Kingsland, Modeling Mature, Episodes in the History of Population Ecology, The University of Chicago Press, Chicago-London (1985).

    Google Scholar 

  13. Sharon E. Kingsland, Mathematical figments, biological facts: population ecology in the thirties, Journal of the History of Biology, 19; 235–256 (1985).

    Article  Google Scholar 

  14. Ana Milan Gasca, Volterra’s biomathematics and biologists’ biological facts, Hist. St. in the Phys. and Biolog. Sc., 26:347–403 (1996).

    MathSciNet  Google Scholar 

  15. Francesco M. Scudo, The 'golden age of theoretical ecology': a conceptual appraisal, Rev. Euro, des Sc. Soc, 22, 67 (1986).

    Google Scholar 

  16. Herbert Andrewartha, The use of conceptual models in population ecology, Cold Spr. Harbor Symp. on Quant. Biol, 22: 219–236 (1957).

    Article  Google Scholar 

  17. Luciano Andreozzi, Vito Volterra organizzatore scientifico e la nascita della biologia matematica in Italia, forthcoming on Nuncius.

    Google Scholar 

  18. Alfred Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. of the Nat. Acad. of Sc. , 6 (1920).

    Google Scholar 

  19. Alfred Lotka, Elements of physical biology, Williams and Wilkins, Baltimore (1925)

    MATH  Google Scholar 

  20. A.Lotka, republished as Elements of Mathematical Biology, Dover, New York (1956).

    MATH  Google Scholar 

  21. Umberto D'Ancona, La lotta per I’esistenza, Einaudi, Torino (1942).

    Google Scholar 

  22. Umberto D'Ancona, The Struggle for Existence, Engl. transl. by A. Charles and R.F. Withers, Bibliotheca Biotheoretica, Leiden (1954).

    Google Scholar 

  23. George Evelyn Hutchinson, An Introduction to Population Ecology, Yale University Press, New Haven and London (1978).

    MATH  Google Scholar 

  24. Charles S. Elton, Periodic fluctuations in the number of animals, their causes and effects, Brit. J. of Exper. Biol., II (1924).

    Google Scholar 

  25. Charles S. Elton, Animal Eecology, Sidgwik and Jacson, London (1927), 2nd enlarged edition New York, MacMillan (1935).

    Google Scholar 

  26. Charles S. Elton and Mary Nicholson, The ten-year cycle in numbers of the lynx in Canada, J. of Anim. Ecol, XI (1942), pp. 215–244.

    Article  Google Scholar 

  27. Volterra Archive, letters from Elton to Volterra, letter number 1.

    Google Scholar 

  28. Umberto D'Ancona, Dell’influenza della stasi peschereccia del periodo 1914-18 sul patrimonio ittico dell’Alto Adriatico, Memorie del Regio Comitato Talassografico Italiano, CXXVI (1926).

    Google Scholar 

  29. Antonio Berlese, Considerazioni sui rapporti tra piante, loro insetti nemici e cause nemiche di questi, Redia, IV (1906).

    Google Scholar 

  30. Lorenzo Camerano, Dell’equilibrio dei viventi mercé la reciproca distruzione, Atti della Regia Accademia delle Scienze di Torino, XV (1880).

    Google Scholar 

  31. Joel E. Cohen, Lorenzo Camerano's contribution to early food web theory, in Frontiers of Theoretical Biology. Lecture Notes in Biomathematics, 100, Simon A. Levin (ed.), Springer-Verlag, New York (1994): 351–359.

    Google Scholar 

  32. Pascal Acot and Jean-Marc Drouin, L'introduction en France des idées de I’écologie scientifique américaine dans I’entre-deux-guerres, Rev. d'Histoire des Sci., 50,4: 461–479 (1997).

    Article  Google Scholar 

  33. William R. Thompson, Biological control and the theories of the interactions of populations, Parasitology, XXXI: 301–388 (1939).

    Google Scholar 

  34. Leland O. Howard, A study of insect parasitism, U.S. Department of Agricolture, Division of Entomology, Techincal Series no. 5 (1897): pp. 5–57.

    Google Scholar 

  35. Paul Marchal, L’équilibre numérique des espéces et ses relations avec les parasites chez les insects, Comp. Rend. Soc. Biol., XLIX, 49: p. 129 (1897).

    Google Scholar 

  36. Paul Marchal, The utilization of auxiliary entomophagous insects in the struggle against insects injurious to agricolture, Pop. Sc. Montly, 72: 352–70,406-419 (1908).

    Google Scholar 

  37. Richard M. Goodwin, Essays in Economic Dynamics, The Macmillan Press, London (1982).

    Google Scholar 

  38. Thomas R. Malthus, An Essay on the Principle of Population, edited by Patricia James, Cambridge University Press, Cambridge (1989), first published in 1803.

    Google Scholar 

  39. Paul De Bach and Harry S. Smith, Are Population Oscillations Inherent in the Host-Parasite Relation?, Ecology, XXII (1941): 363–369.

    Article  Google Scholar 

  40. Georgii Frantsevich Gause, The Struggle for Existence, Williams and Wilkins, Baltimore (1934), reprint New York, Dover (1971).

    Book  Google Scholar 

  41. Georgii Frantsevich Gause, Verifications Expérimentales de la Théorie Mathématique de la Lutte Pour la Vie, Hermann, Paris (1935).

    Google Scholar 

  42. Michael E. Gilpin, Do hares eat lynx?, Amer. Naturist, 107 (1973).

    Google Scholar 

  43. E. Leigh, The ecological role of Volterra's equations, in M. Gerstenhaber, (ed.) Some Mathematical Problems in Biology, The American Mathematical Society, Providence (1968).

    Google Scholar 

  44. Jordi Bascompte, Ricard V. Solé, Norbert Martinez, Population cycles and spatial patterns in snowshoe hares: an individual-oriented simulation, J. of Theor. Biol, 187: 213–222 (1987).

    Article  Google Scholar 

  45. E.C. Pielou, The usefulness of ecological models: a sotck-taking, The Quart. Rev. of Biol, 56 (1981).

    Google Scholar 

  46. A.R. Sinclair, J.M. Gosline, J.M. Krebs, C.J. Boutin, S. Smith, R. Boonstra, Can the solar cycle and climate syncronize the snowshoe hare cycle in Canada?, Amer. Naturalist, 141: 173–198 (1993).

    Article  Google Scholar 

  47. Charles Darwin, On the Origin of the Species, in The Works of Charles Darwin, edited by Paul H. Barrett and R. B. Freeman, William Pichering, London (1988), vol. 15 (first published in 1859).

    Google Scholar 

  48. Giorgio Israel, La Mathématization du Réel Essai sur la Modélisation Mathématique, Editions du Seuil, Paris (1996).

    Google Scholar 

  49. Garrett Hardin, The competitive exclusion principle, Science, 131 (1960).

    Google Scholar 

  50. P. A. Riley, The origin of the principle of competitive exclusion: was Darwin influenced by Sismondi?, Linnean, 2 (3): 20–22(1986).

    Google Scholar 

  51. Andrei N. Kolmogoroff, Sulla teoria di Volterra della lotta per I’esistenza, Giornale Istit. Ital Attuari, 1 (1936).

    Google Scholar 

  52. Vladimir A. Kostitzin, Sur les solutions asymptotiques d'équations différentielles biologiques, Compt. Rendus de I'Académ. des Sc, 203: 1124–1126 (1936).

    Google Scholar 

  53. Robert May, On relationships among various types of population models, Amer. Natur., 107: 46–57 (1973).

    Article  Google Scholar 

  54. Alfred Lotka, The growth of mixed populations: two species competing for a common food supply, J. of the Wash. Ac. of Sc, 22 (1932).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andreozzi, L. (2002). The History of Theoretical Population Ecology: Which Role for Mathematical Modeling?. In: Cerrai, P., Freguglia, P., Pellegrini, C. (eds) The Application of Mathematics to the Sciences of Nature. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0591-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0591-4_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5147-4

  • Online ISBN: 978-1-4615-0591-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics