Exactly Solvable Extended Hubbard Model

  • D. F. Wang


In this work, we introduce long-range version of the extended Hubbard model. The system is defined on a nonuniform lattice. We show that the system is integrable. The ground state, the ground state energy, and the energy spectrum are also found for the system. Another long-range version of the extended Hubbard model is also introduced on a uniform lattice, and this system is proven to be integrable.


Wave Function Ground State Energy Spin Chain Hubbard Model Uniform Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    P. W. Anderson, Science 235, 1196 (1987).ADSCrossRefGoogle Scholar
  2. [2]
    Lu Yu, Zhao-bin Su and Yan-min Li, Chin. J. Phys. (Taipei) 31,579 (1993), and references therein.Google Scholar
  3. [3]
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).ADSCrossRefGoogle Scholar
  4. [3a]
    C. N. Yang, ibid. 19, 1312 (1967).Google Scholar
  5. [4]
    C. N. Yang, Phys. Rev. Lett. 63, 2144 (1989).ADSCrossRefGoogle Scholar
  6. [5]
    C. N. Yang and S. C. Zhang, Mod. Phys. Lett. B 4, 759 (1990).ADSGoogle Scholar
  7. [6]
    F. H. L. Ebler, V. E. Korepin and K. Schoutens, Nucl. Phys. B 384, 431 (1992).ADSCrossRefGoogle Scholar
  8. [7]
    F. H. L. Ebler, V. E. Korepin and K. Schoutens, Phys. Rev. Lett. 68, 2960 (1993).ADSGoogle Scholar
  9. [8]
    A. P. Polychronakos, Phys. Rev. Lett. 70, 2329 (1993).ADSCrossRefGoogle Scholar
  10. [9]
    D. F. Wang and C. Gruber, Phys. Rev. B 49, 15 712 (1994).Google Scholar
  11. [10]
    C. Gruber and D. F. Wang, Phys. Rev. B 50, 3103 (1994).ADSGoogle Scholar
  12. [11]
    M. Fowler and J. A. Minahan, Phys. Rev. Lett. 70, 2325 (1993).ADSCrossRefGoogle Scholar
  13. [12]
    Y. Kuramoto and H. Yokoyama, Phys. Rev. Lett. 67, 1338 (1991).ADSCrossRefGoogle Scholar
  14. [13]
    N. Kawakami, Phys. Rev. B 46, 1005 (1992).ADSGoogle Scholar
  15. [14]
    D. F. Wang, James T. Liu and P. Coleman, Phys. Rev. B 46, 6639 (1992).ADSCrossRefGoogle Scholar
  16. [15]
    F. D. M. Haldane, Phys. Rev. Lett. 60, 635 (1988).MathSciNetADSCrossRefGoogle Scholar
  17. [16]
    B. S. Shastry, Phys. Rev. Lett. 60, 639 (1988).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • D. F. Wang
    • 1
  1. 1.Institut de Physique ThéoriqueEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations