Advertisement

Electrical Breakdown Experiments in Air for Micrometer Gaps Under Various Pressures

  • P. Hartherz
  • K. Ben Yahia
  • L. Mueller
  • R. Pfendtner
  • W. Pfeiffer

Abstract

In gases the breakdown voltage was defined by Paschen (1889) to be proportional to the product of pressure p (or to be more exact density ρ) and electrode spacing d. This has been widely accepted to be true independent of the actual values of pressure and electrode spacing. Paschen himself on the other hand only validated this ”law” for gap sizes of .01 cm to .15 cm with atmospheric pressure and .1 cm to 2 cm with pressures of 2 cmHg to 75 cmHg, i.e. 26.67 mbar to 1 bar. It was never confirmed, that the breakdown dependence from the product p · d really applies to electrode distances below 100 µm. All measurements done in the past to obtain the p · d values in the range below .1 bar-mm as presented by Dakin et al. (1971) were performed at small pressures but rather large gaps. Nevertheless it is widely accepted to use these p · d values for atmospheric pressure and gap widths below 100 µm. As Germer (1959), Boyle and Kisiluk (1955) and Hartherz et al. (2000) have shown, the general assumption of the so called ”Paschen Minimum” for small gaps below 10 µm is not applicable in general. Especially the increase of the breakdown voltage for p · d values below 8 bar-urn does not apply to air pressures in the range of 1 bar.

Keywords

Breakdown Voltage Step Motor Electrode Spacing Electron Avalanche Robert Bosch GmbH 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Beyer, M., W. Boeck, K. Möller, and W. Zaengl: 1986, Hochspannungstechnik. Berlin Heidelberg:Springer- Verlag.Google Scholar
  2. Boyle, W. and P. Kisiluk: 1955, Departure from Paschen s Law of Breakdown of GasesThe Physical Review 97(2), 255 - 259.CrossRefGoogle Scholar
  3. Dakin, T., G. Luxa, et al.: 1971,Breakdown of Gases in uniform Fields - Paschen curves for Nitrogen, Air and Sulfur Hexafluoride. Electra. 32, 61 - 82.Google Scholar
  4. Germer, L. H.: 1959,Electrical Breakdown between Close Electrodes in Air. Journal of Applied Physics 30(1), 46 - 51.CrossRefGoogle Scholar
  5. Hartherz, P., K. B. Yahia, C. Subert, L. Müller, R. Pfendtner, W. Hiller, and W. Pfeiffer: 2000, Breakdown voltage in micrometer gaps - Deviations from Paschens law. In: S. MacGregor (ed.): Proceedings: XIII International Conference on Gas Discharges and their Applications. Glasgow, UK, pp. 493 - 496.Google Scholar
  6. Oppermann, G.: 1974, Uber die Gültigkeit des Paschen-Gesetzes für Schwefelhexafluorid bei Gleich-, Wechsel- und Stoss-Spannungen. Ph.D. thesis, Technische Universität Berlin (D 83).Google Scholar
  7. Paschen, F.: 1889,Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche PotentialdifferenzAnnalen der Phsik 37, 69 - 96.CrossRefGoogle Scholar
  8. Wind, G.: 1971,Paschen curve for Air. In Dakin et al. (1971), pp. 64 - 70.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • P. Hartherz
    • 1
  • K. Ben Yahia
    • 1
  • L. Mueller
    • 2
  • R. Pfendtner
    • 1
  • W. Pfeiffer
    • 3
  1. 1.Corporate Research and DevelopmentRobert Bosch GmbHStuttgartGermany
  2. 2.IEHUniversity of StuttgartStuttgartGermany
  3. 3.Darmstadt University of TechnologyDarmstadtGermany

Personalised recommendations