Gene Expression Changes and Progression to a BBB Phenotype in a Dynamic Model of the BBB

  • Shailesh Y. Desai
  • Mark A. McAllister
  • Kristine Goodrich
  • Marc M. Mayberg
  • Damir Janigro

Abstract

It is well established that mammalian endothelial cells (EC) acquire specialized functions in response to a variety of cellular, molecular and physical stimuli. While for most cell types, chemical signals play a pivotal, if not unique, role in determining cell physiology. Vascular EC differentiation depends on simultaneous exposure to both cellular (vascular smooth muscle, glia) and physical (shear stress, cyclical strain) signals. Shear stress in particular has been shown to cause profound changes in EC morphology ( Ott et al.,1995), gene expression (Akimoto et al.,2000), and function (Ngai and Winn, 1995). Some of these changes share similarities with EC responses to inflammatory cytokines. Thus, hemodynamic forces affecting ECs may play a role in both the development and prevention of vascular disease (Pohlman and Harlan, 2000).

Keywords

Ischemia Lactate Pyruvate Luminal NADH 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akimoto, S., Mitsumata, T. Sasaguri T., and Yoshida Y. Laminar Shear Stress Inhibits Vascular Endothelial Cell Proliferation by Inducing Cyclin-Dependent Kinase Inhibitor p21Sdil/Cipl/Wafl. Circ Res 86: 185–190, 2000.PubMedCrossRefGoogle Scholar
  2. Bai, C., Richman, R., Elledge, S.J. Human cyclin F. EMBO J 13: 6087–6098, 1994.PubMedGoogle Scholar
  3. Ciolino, H. P. and R. L. Levine. Modification of proteins in endothelial cell death during oxidative stress. Free Radic.Biol.Med. 22: 1277–1282, 1997.PubMedCrossRefGoogle Scholar
  4. Denekamp, J. Review article: angiogenesis, neovascular proliferation and vascular pathophysiology as targets for cancer therapy. Br. J. Radiol. 66: 181, 1993.PubMedCrossRefGoogle Scholar
  5. Hazel, A.L., Pedley, T.J., Vascular ECs minimize the total force on their nuclei. Biophys J. 78: 47–54, 2000.PubMedCrossRefGoogle Scholar
  6. Janigro, D., S. Leaman, and K. A. Stanness. Dynamic in vitro modeling of the BBB: an novel tool for the studies of drug delivery to the brain. Pharmacological science and technology today 2: 7–12, 1999.CrossRefGoogle Scholar
  7. Laurindo, F. R. M., M. A. Pedro, H. V. Barbeiro, F. Pileggi, C. Carvalho, O. Augusto, and P. L. de Luz. Vascular free radical release: ex vivo and in vivo evidence for a flowdependent endothelial mechanism. Circ.Res. 74: 700–709, 1994.PubMedCrossRefGoogle Scholar
  8. Lin, K., P. P. Hsu, B. P. Chen, S. Yuan, S. Usami, J. Y. Shyy, Y. S. Li, and S. Chien. Molecular mechanism of endothelial growth arrest by laminar shear stress. Proc.Natl.Acad.Sci.U.S.A 97: 9385–9389, 2000.PubMedCrossRefGoogle Scholar
  9. Nagel, T., N. Resnick, C. F. Dewey, Jr., and M. A. Gimbrone, Jr. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler.Thromb.Vasc.Biol. 19: 1825–1834, 1999.PubMedCrossRefGoogle Scholar
  10. Ngai, A. C. and H. R. Winn. Modulation of cerebral arteriolar diameter by intraluminal flow and pressure. Circ.Res. 77: 832–840, 1995.PubMedCrossRefGoogle Scholar
  11. Ott, M. J., J. L. Olson, and B. J. Ballermann. Chronic in vitro flow promotes ultrastructural differentiation of endothelial cells. Endothelium 3: 21–30, 1995.CrossRefGoogle Scholar
  12. Pekny, M., K. A. Stanness, C. Eliasson, C. Betsholtz, and D. Janigro. Impaired induction of blood-brain barrier properties in aortic endothelial cells by astrocytes from GFAP-deficient mice. Glia 22: 1–11, 1997.Google Scholar
  13. Pohlman, T. H. and J. M. Harlan. Adaptive responses of the endothelium to stress. J Surg.Res 89: 85–119, 2000.PubMedCrossRefGoogle Scholar
  14. Stanness, K. A., E. Guatteo, and D. Janigro. A dynamic model of the blood-brain barrier “in vitro”. Neurotoxicology 17: 481–496, 1996.PubMedGoogle Scholar
  15. Stanness, K. A., L. E. Westrum, P. Mascagni, E. Fornaciari, J. A. Nelson, S. G. Stenglein, and D. Janigro. Morphological and functional characterization of an in vitro blood-brain barrier model. Brain Res. 771: 329–342, 1997.PubMedCrossRefGoogle Scholar
  16. Van D.V., Tekstra, J., Beelen, R.H., Tensen, C.P., Van, D.V., De Groot, C.J. Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol 154: 45–51, 1999.CrossRefGoogle Scholar
  17. Wei, Z., K. Costa, A. B. Al-Mehdi, C. Dodia, V. R. Muzykantov, and A. B. Fisher. Simulated Ischemia in Flow-Adapted Endothelial Cells Leads to Generation of Reactive Oxygen Species and Cell Signaling. Circ Res 85: 682–689, 1999.PubMedCrossRefGoogle Scholar
  18. Zhao, S., Suciu, A., Ziegler, T., Moore, J.E., Jr., Burki, E., Meister, J.J., Brunner, H.R. Synergistic effects of fluid shear stress and cyclic circumferential stretch on vascular EC morphology and cytoskeleton. Arterioscler Thromb Vasc Biol. 15: 1781–1786, 1995.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • Shailesh Y. Desai
    • 1
  • Mark A. McAllister
    • 1
  • Kristine Goodrich
    • 1
  • Marc M. Mayberg
    • 1
  • Damir Janigro
    • 1
  1. 1.Cerebrovascular Research Group, Department of NeurosurgeryLerner Research Institute, Cleveland Clinic FoundationClevelandUSA

Personalised recommendations