Skip to main content

Issues Related to Intranasal Delivery of Neuropeptides to Temporal Lobe Targets

  • Chapter
Blood—Brain Barrier

Abstract

The nasal cavity is the first line of defense from airborne pathogens yet it has been known since antiquity that the nose and its mucosal lining serves as a locus for drug delivery to the systemic circulation and brain. The intranasal application of tobacco snuff, cocaine, and various hallucinogens and psychotropic agents are well known examples (Doty, 1995). Intranasal delivery of peptides to blood is a more recent accomplishment (Pontiroli, 1998). Delivery of neuropeptides directly to specific CNS loci is just beginning to emerge and timely reviews on this approach have appeared. Advantages of this means of crossing the blood brain barrier include: ease of use, long-term compliance, uninterrupted delivery, ease of dosing and treatment schedules (Baker, 1995; Mathison et al.,1998; Agarwal and Mishra, 1999; Thome et al.,1995; Ilium, 2000). However, several transolfactory barriers exist. Solutes entering the nasal cavity are destined for three regions: 1) vestibular; 2) respiratory and 3) olfactory. The olfactory region is the most functionally important site for direct access to the brain. Three major barriers to neuropeptide bioavailability exist in this region: 1) presence of tight junctions between sensory and supporting cells, preventing epithelial transport to the submucous space; 2) a mucous layer containing protective proteolytic/hydrolytic enzymes that impart an enzymatic barrier to nasally administered drugs and peptides and; 3) mucous layer clearance that influences time-dependent neuropeptide absorptive (uptake) availability. Following olfactory neuronal uptake, neuropeptides are susceptible to further degradation as they are carried by axonal transport and following synapses of the olfactory tract to primary CNS targets; namely amygdala, hippocampus, piriform, and entorhinal cortices. Sufficient sustained neuropeptide release at these targets is necessary for a pharmacological effect. We reported previously that site-specific delivery of the neuropeptide Thyrotropin-releasing hormone fabricated as polyanhydride microdisks can attenuate kindled epileptogenesis indicating that it is likely carried to sites in the brain where it affects local excitability (Kubek et al.,1998). We suggest that intranasal application of surfaceeroding TRH-polyanhydride microstructures would enhance: 1) olfactory nerve uptake; 2) transneuronal transport and transfer; and 3) site-specific release of TRH in temporal lobe targets for the treatment of certain neurodegenerative disorders. In addition to its clinical importance, TRH is the smallest neuropeptide to date, and would serve as a prototype peptide in further understanding this delivery pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, V., and Mishra, B. 1999, Recent trends in drug delivery systems: intranasal drug delivery. Indian J. Exp. Biol. 37: 6–16.

    PubMed  CAS  Google Scholar 

  • Baker, H. 1995, Transport Phenomena within the Olfactory System. In R. Doty (Ed.), Handbook of Olfaction and Gustation. Marcel Dekker, New York, pp. 173–190.

    Google Scholar 

  • Borkenstein, M.H. 1983, The effects of intranasally sprayed synthetic TRH on TSH and on PRL secretion in children. European J. Ped. 140: 17–18.

    Article  CAS  Google Scholar 

  • Brannon-Peppas, L. 1997, Polymers in controlled drug delivery. Medical Plastics and Biomaterials 97: 1–16.

    Google Scholar 

  • Brown, R.E. 1985, The rodents I: effects of odours on reproductive physiology (primer effects). In R.E. Brown and D.W. MacDonald (Eds.). Social odours in mammals. Clarendon Press, Oxford pp. 245–344.

    Google Scholar 

  • Calza, L., Giardino, L., Ceccatelli, S., Zanni, M., Elde, R., and Hokfelt, T. 1992, Distribution of Thyrotropin-Releasing Hormone Receptor Messenger RNA in the Rat Brain: An In Situ Hybridization Study. Neuroscience 51: 891–909.

    Article  PubMed  CAS  Google Scholar 

  • Cao, J., O’Donnell, D., Vu, H., Payza, K., Pou, C., Godbout, C., Jakob, A., Pelletier, M., Lembo, P., Ahmad, S., and Walker, P. 1998, Cloning and characterization of a cDNA encoding a novel subtype of rat thyrotropin-releasing hormone receptor. J. Biol. Chem. 273: 32281–32287.

    Article  PubMed  CAS  Google Scholar 

  • Chen, X., Fawcett, J.R., Rahman, Y.E., Ala, T.A., and Frey II, W.H. 1998, Delivery of nerve growth factor to the brain via the olfactory pathway. J. Alzheimer’s Disease 1: 35–44.

    CAS  Google Scholar 

  • Chepournova, N.E., Kossova, G.V., Abbasova, K., Prahlad Chandra Kumar, C., Chepournov, S.A., and Ashmarin, I.P. 1994, Thyrotropin-Releasing hormone (TRH) in ultra low doses decreases severity of seizures in rats. Neuropeptides 26: 52(abstract).

    Article  Google Scholar 

  • Cross, R., and Scholey, J. 1999, Kinesin: the tail unfolds. Nat. Cell Biol., 1, E119–121.

    Article  PubMed  CAS  Google Scholar 

  • Distal, H., Ayabe-Kanamura, S., Martinez-Gomez, M., Schicker, I., Kobayakawa, T., Saito, S., and Hudson, R. 1999, Perception of everyday odors—Correlation between intensity, familiarity and strength of hedonic judgement. Chem. Senses 24: 191–199.

    Article  Google Scholar 

  • Domb, A.J. 1994, Implantable Biodegradable Polymers for Site-Specific Drug Delivery. In A.J. Domb (Ed.), Polymeric Site-Specific Pharmacotherapy. John Wiley and Sons Ltd., England pp. 1–26.

    Google Scholar 

  • Domb, A.J., and Nudelman, R. 1995, In vivo and in vitro elimination of aliphatic polyanhydrides. Biomaterials 16: 319–323.

    Article  PubMed  CAS  Google Scholar 

  • Doty, R.L. (1995). Introduction and Historical Perspective. In R. Doty (Ed.), Handbook of Olfaction and Gustation. Marcel Dekker, New York, pp. 1–32.

    Google Scholar 

  • Duntas, L., Keck, F.S., Loos, U., and Pfeiffer, E.F. 1988, Pharmacokinetics and pharmacodynamics of protirelin (TRH) in man. Dtsch Med Wochenschr 113: 1354–1357.

    Article  PubMed  CAS  Google Scholar 

  • Eymin, C., Champier, J., Duvernoy, H.M., Martin, D., Kopp, N., and Jordan, D. 1993, Distribution of thyrotropin-releasing hormone binding sites: autoradiographic study in infant and adult human hippocampal formation. Brain Res. 605: 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Faden, A.I., Fox, G., Fan, L., Knoblach, S., Araldi, G.L., and Kozikowski, A.P. 1999, Neuroprotective and cognitive enhancing effects of novel small peptides. Ann. N Y Acad. Sci., 890: 120–125.

    Article  PubMed  CAS  Google Scholar 

  • Faden, A.I., Fox, G.B., Fan, L., Araldi, G.L., Qiao, L., Wang, S., and Kozikowski, A.P. 1999, Novel TRH analog improves motor and cognitive recovery after traumatic brain injury in rodents. Am. J Physiol. 277: (Pt 2), R1196–1204.

    PubMed  CAS  Google Scholar 

  • Ferrari, E., Cucinotta, D., Albizatti, M.G., Bartorelli, L., Colombo, N., Ferretti, G., Galetti, G., Galliano, U., Grezzana, L.G., Pedone, V., Sard, G., Scali, G., Zamboni, M., Girardello, R., Poli, A., and Ambrosoli, L. 1998, Effectiveness and Safety of Posatirelin in the Treatment of Senile Dementia: A Multicenter, Double Blind, Placebo-Controlled Study. Arch. Gerontol. Geriatr. suppl. 6: 163–174.

    Article  CAS  Google Scholar 

  • Fisher, R.S. 1989, Animal models of the epilepsies. Brain Research Reviews 14: 245–278.

    Article  PubMed  CAS  Google Scholar 

  • Frey II, W.H., Liu, J., Chen, X., Thome, R.G., Fawcett, J.R., Ala, T.A., and Rahman, Y.E. 1997, Delivery of 125I-NGF to the brain via the olfactory route. Drug Del. 4: 87–92.

    Article  CAS  Google Scholar 

  • Grafstein, B. 1971, Transneuronal transfer of radioactivity in the central nervous system. Science 172: 11–19.

    Article  Google Scholar 

  • Griffiths, E.C., Kelly, J.A., Ashcroft, A., Ward, D.J., and Robson, B. 1989, Part V. TRH metabolism. Comparative metabolism and conformation of TRH and its analogues. Ann. N Y Acad. Sci. 553: 217–231.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto, T., Wada, T., Fukuda, N., and Nagaoka, A. 1993, Effect of thyrotropin-releasing hormone on pentobarbitone-induced sleep in rats: continuous treatment with a sustained release injectable formulation. J. Pharm. Pharmacol. 45: 94–97.

    Article  PubMed  CAS  Google Scholar 

  • Heuer, H., Schafer, M.K.-H., and Bauer, K. 1998, The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme: The Third Element of the Thyrotropin-Releasing Hormone-Signaling System. Thyroid 8: 915–920.

    Article  PubMed  CAS  Google Scholar 

  • Hussain, M.A., and Aungst, B.J. 1992, Nasal absorption of leucine enkephalin in rats and the effects of aminopeptidase inhibition, as determined from the percentage of the dose unabsorbed. Pharmaceutical Res. 9: 1362–1364.

    Article  CAS  Google Scholar 

  • Ilium, L. 2000, Transport of drugs from the nasal cavity to the central nervous system. Eur. J. Pharm. Sci. 11: 1–18.

    Article  Google Scholar 

  • Itadani, H., Nakamura, T., Itoh, J., Iwaasa, H., Kanatani, A., Borkowski, J., Ihara, M., and Ohta, M. 1998, Cloning and characterization of a new subtype of thyrotropin-releasing hormone receptors. Biochem. Biophys. Res. Comm. 250: 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Jaworska-Feil, L., Budziszewska, B., and Lason, W. 1995, The effects of repeated amphetamine administration on the thyrotropin-releasing hormone level: Its release and receptors in the rat brain. Neuropeptides 29: 171–176.

    Article  PubMed  CAS  Google Scholar 

  • Jaworska-Feil, L., Turchan, J., Przewlocka, B., Budziszewska, B., Leskiewicz, M., and Lason, W. 1999, Effects of Pilocarpine-and kainate-induced seizures on thyrotropinreleasing hormone biosynthesis and receptors in the rat brain. J Neural. Transm. 106: 395–407.

    Article  PubMed  CAS  Google Scholar 

  • Kagatani, S., Inaba, N., Fukui, M., and Sonobe, T. 1998, Nasal absorption kinetic behavior of azetirelin and its enhancement by acylcarnitines in rats. Pharm. Res. 15: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Knoblach, S.M., and Kubek, M.J. 1994, Thyrotropin-releasing hormone release is enhanced in hippocampal slices after electroconvulsive shock. J. Neurochem. 62: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Kratskin, I.L. (1995). Functional Anatomy, Central Connections, and Neurochemistry of the Mammalian Olfactory Bulb. In R. Doty (Ed.), Handbook of Olfaction and Gustation. Marcel Dekker, New York, pp. 103–126.

    Google Scholar 

  • Kristensson, K., and Olsson, Y. 1971, Uptake of exogenous proteins in mouse olfactory cells. Acta Neuropathol. 19: 145–154.

    Article  PubMed  CAS  Google Scholar 

  • Kubek, M.J. (1986). Thyrotropin-releasing hormone: Localization of specific hypothalamic and extrahypothalamic sites of CNS modulation. In R.C.A. Frederickson, H. Hendrie, J.N. Hingtgen, and M.H. Aprison (Eds.), Neuroregulation of Autonomic, Endocrine and Immune Systems. Martinus-Nijhoff, Boston, pp. 265–301.

    Chapter  Google Scholar 

  • Kubek, M.J., Knoblach, S.M., Sharif, N.A., Burt, D.R., Buterbaugh, G.G., and Fuson, K.S. 1993, Thyrotropin-releasing hormone gene expression and receptors are differentially modified in limbic foci by seizures. Ann. Neurology 33: 70–76.

    Article  CAS  Google Scholar 

  • Kubek, M.J., Liang, D., Byrd, K.E., and Domb, A.J. 1998, Prolonged seizure suppression by a single implantable polymeric-TRH microdisk preparation. Brain Res. 809: 189–197.

    Article  PubMed  CAS  Google Scholar 

  • Kubek, M.J., Low, W.C., Sattin, A., Morzorati, S.L., Meyerhoff, J.L., and Larsen, S.H. 1989, Role of TRH in Seizure Modulation. Ann. NY Acad. Sci. 553: 286–303.

    Article  PubMed  CAS  Google Scholar 

  • Lanza, D.C., and Clerico, D.M. (1995). Anatomy of the Human Nasal Passages. In R. Doty (Ed.), Handbook of Olfaction and Gustation. Marcel Dekker, New York, pp. 53–73.

    Google Scholar 

  • Lewis, J., and Dahl, A.R. (1995). Olfactory Mucosa: Composition, Enzymatic Localization, and Metabolism. In R. Doty (Ed.), Handbook of Olfaction and Gustation.. Marcel Dekker, New York, pp. 33–52.

    Google Scholar 

  • Loscher, W. 1997, Animal models of intractable epilepsy. Prog Neurobiol. 53: 239–258.

    Article  PubMed  CAS  Google Scholar 

  • Manaker, S., Eichen, A., Winokur, A., Rhodes, C.H., and Rainbow, T.C. 1986, Autoradiographic localization of thyrotropin releasing hormone receptors in human brain. Neurol. 36: 641–646.

    Article  CAS  Google Scholar 

  • Mantyh, P.W., and Hunt, S.P. 1985, Localization by light microscopic autoradiography in rat brain using (3H)(3-Me-His2)TRH as the radioligand. J. Neurosci. 5: 551–561.

    PubMed  CAS  Google Scholar 

  • Marangell, L.B., George, M.S., Bissette, G., Pazzaglia, P., Huggins, T., and Post, R.M. 1994, Carbamazepine increases cerebrospinal fluid thyrotropin-releasing hormone levels in affectively ill patients. Arch. Gen. Psychiatry 51: 625–628.

    Article  PubMed  CAS  Google Scholar 

  • Marangell, L.B., George, M.S., Callahan, A.M., Ketter, T.A., Pazzaglia, P.J., L’Herrou, T.A., Leverich, G.S., and Post, R.M. 1997, Effects of intrathecal thyrotropin-releasing hormone (protirelin) in refractory depressed patients. Arch. Gen. Psychiatry 54: 214–222.

    Article  PubMed  CAS  Google Scholar 

  • Mathison, S., Nagilla, R., and Kompella, U.B. 1998, Nasal route for direct delivery of solutes to the central nervous system: fact or fiction? J. Drug Target. 5: 415–441.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, K., Itoh, K., Mizumachi, M., Kubo, H., Goto, T., Sato, S., and Wada, K. 1996, Effect of intranasal administration of thyrotropin-releasing hormone on ataxic gait in staggerer mice. Neurosci. Lett. 212: 115–118.

    Article  PubMed  CAS  Google Scholar 

  • McNamara, J.O. 1994, Cellular and molecular basis of epilepsy. J. Neurosci. 74: 3417–3425.

    Google Scholar 

  • McNamara, J.O. (1996). Drugs effective in the therapy of the epilepsies. In J.G. Hardman, A. Goodman Gilman, and L.E. Limbird (Eds.), Goodman and Gilman’s The Pharmacological Basis of Therapeutics. McGraw Hill, New York, pp. 461–486.

    Google Scholar 

  • McNamara, J.O., Bonhaus, D.W., and Shin, C. (1993). The kindling model of epilepsy. In P.A. Schwartzkroin (Ed.), Epilepsy: Models, Mechanisms, and Concepts. Cambridge University Press, Cambridge, pp. 27–47.

    Chapter  Google Scholar 

  • Middleton, J.C., and Tipton, A.J. 1998. Synthetic biodegradable polymers as medical devices. Medical Plastics and Biomaterials 98: 1–17.

    Google Scholar 

  • Mitsuma, T., and Nogimori, T. 1984, Changes in plasma thyrotrophin-releasing hormone, thyrotrophin, prolactin and thyroid hormone levels after intravenous, intranasal or rectal administration of synthetic thyrotrophin-releasing hormone in man. Acta. Endocrinol. (Copenh), 107: 207–212.

    CAS  Google Scholar 

  • Mori, N., and Fukatsu, T. 1992, Anticonvulsant effect of DN-1417, a derivative of Thyrotropin-Releasing hormone, and liposome-entrapped DN-1417, on amygdaloidkindled rats. Epilepsia 33: 994–1000.

    Article  PubMed  CAS  Google Scholar 

  • Morrison, E.E., and Moran, D.T. (1995). Anatomy and Ultrastructure of the Human Olfactory Neuroepithelium. In R. Doty (Ed.), Handbook of Olfaction and Gustation. Marcel Dekker,6New York, pp. 75–101.

    Google Scholar 

  • Nilini, E.A., and Sevarino, K.A. 1999, The biology of pro-Thyrotropin-Releasing Hormone-derived peptides. Endocrine Reviews 20: 599–648.

    Article  Google Scholar 

  • O’Cuinn, G., O’Connor, B., and Elmore, M. 1990, Degradation of thyrotropin-releasing hormone and luteinising hormone-releasing hormone by enzymes of brain tissue. J. Neurochem. 54: 1–13.

    Article  PubMed  Google Scholar 

  • O’Dowd, B.F., Lee, D.K., Huang, W., Nguyen, T., Cheng, R., Liu, Y., Wang, B., Gershengorn, M.C., and George, S.R. 2000, TRH-R2 exhibits similar binding and acute signaling but distinct regulation and anatomic distribution compared with TRH-R1. Mol. Endocrinol. 14: 183–193.

    Article  PubMed  Google Scholar 

  • Ochs, S., and Brimijoin, W.S. (1993). Axonal transport. In P.J. Dyck, P.K. Thomas, J.W. Griffin, P.A. Low, and J.F. Poduslo (Eds.), Peripheral Neuropathy. Saunders, Philidelphia, pp. 331–360.

    Google Scholar 

  • Okamoto, M., Sato, M., Moriwake, T., Morimoto, K., Ogawa, T., Morita, K., Nakatsu, T., and Ogawa, N. 1985, The prophylactic and anticonvulsant effects of a TRH analog (DN-1417) on amygdaloid kindling model of epilepsy. Folia Psychiatrica Neurologica Japonica 39: 313–316.

    CAS  Google Scholar 

  • Perras, B., Marshall, L., Kohler, G., Born, J., and Fehm, H.L. 1999, Sleep and endocrine changes after intranasal administration of growth hormone-releasing hormone in young and aged humans. Psychoneuroendocrinology 24: 743–757.

    Article  PubMed  CAS  Google Scholar 

  • Peters, F., Schulze-Tollert, J., and Schuth, W. 1991, Thyrotrophin-releasing hormone—a lactation-promoting agent? Br J Obstet Gynaecol 98, 880–88

    Article  PubMed  CAS  Google Scholar 

  • Pontiroli, A.E. 1998, Peptide hormones: Review of current and emerging uses by nasal delivery. Adv Drug Deliv. Rev. 29: 81–87.

    Article  PubMed  CAS  Google Scholar 

  • Racine, R. 1978, Kindling: The First Decade. Neurosurg. 3: 234–252.

    Article  CAS  Google Scholar 

  • Racine, R.J. 1972, Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalography Clin. Neurophysiol. 32: 281–294.

    Article  CAS  Google Scholar 

  • Racine, R.J., Ivy, G.O., and Milgram, N.W. 1989, Kindling: clinical relevance and anatomical substrate. In T.G. Bolwig and M.R. Trimble (Eds.), The Clinical Relevance of Kindling, (pp. 15–34). New York: John Wiley and Sons.

    Google Scholar 

  • Renming, X., Ishihara, K., Sasa, M., Ujihara, H., Momiyama, T., Fujita, Y., Todo, N., Serikawa, T., Yamada, J., and Takaori, S. 1992, Antiepileptic effect of CNK-602A, a novel thyrotropin-releasing hormone analog, on absence-like and tonic seizures of spontaneously epileptic rats. European J. Pharm. 223: 185–192.

    Article  CAS  Google Scholar 

  • Rosen, J.B., Weiss, S.R.B., and Post, R.M. 1994, Contingent tolerance to carbamazepine: alterations in TRH mRNA and TRH receptor binding in limbic structures. Brain Res. 651: 252–260.

    Article  PubMed  CAS  Google Scholar 

  • Sakai, S., Baba, H., Sato, M., and Wada, J.A. 1991, Effect of DN-1417 on Photosensitivity and Cortically Kindled Seizure in Senegalese Baboons, Papio papio. Epilepsia 32: 16–21.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar, M.A. 1992, Drug metabolism in the nasal mucosa. Pharm. Res. 9: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Sato, M., and Morimoto, K. 1983, Anti-epileptic effects of TRH-T and DN-1417. Kurume Med. J. 30: 57–64.

    Article  CAS  Google Scholar 

  • Sato, M., Morimoto, K., and Wada, J.A. 1984, Antiepileptic effects of thyrotropin-releasing hormone and its new derivative, DN-1417, examined in feline amygdaloid kindling preparation. Epilepsia 25: 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, N.G., Verhoef, J.C., DeLannoy, L.M., Romeijn, S.G., Brakkee, J.H., Wiegant, V.M., Gispen, W.H., and Merkus, F.W. 1993, Nasal administration of an ACTH(4-9) peptide analogue with dimethyl-beta-cyclodextrin as an absorption enhancer: pharmacokinetics and dynamics. British Journal of Pharmacology, 110, 1335–1340.

    Article  PubMed  CAS  Google Scholar 

  • Schurr, W., Knoll, B., Ziegler, R., Anders, R., and Merkle, H.P. 1985, Comparative study of intravenous, nasal, oral and buccal TRH administration among healthy subjects. J. Endocrinol. Inves. 8: 41–44.

    CAS  Google Scholar 

  • Sharif, N.A. 1989, Quantitative autoradiography of TRH receptors in discrete brain regions of different mammalian species. Ann. N Y Acad. Sci. 553: 147–175.

    Article  PubMed  CAS  Google Scholar 

  • Shipley, M.T. 1985, Transport of molecules from nose to brain: transneuronal anterograde and retrograde labeling in the rat olfactory system by wheat germ agglutinin-horseradish peroxidase applied to the nasal epithelium. Brain Res. Bull. 15: 129–142.

    Article  PubMed  CAS  Google Scholar 

  • Smolnik, R., Molle, M., Fehm, H.L., and Born, J. 1999, Brain potentials and attention after acute and subchronic intranasal administration of ACTH 4-10 and desacetyl-alpha-MSH in humans. Neuroendocrinol. 70: 63–72.

    Article  CAS  Google Scholar 

  • Staub, J.J., Ryff-Deleche, A.S., Paul, S., Girard, J., Polc, B., and von der Ohe, M. 1985, Intranasal thyrotrophin releasing hormone is a potent stimulus for TSH release in man (comparison with intravenous and oral TRH). Clin Endocrinol. (Oxf) 22: 567–572.

    Article  CAS  Google Scholar 

  • Szabolcs, I., Ploenes, C., Bernard, W., and Herrmann, J. 1989, Thyrotropin-releasing hormone in geriatric patients: intravenous versus intranasal application. Acta Endocrinol. (Copenh) 120: 149–154.

    CAS  Google Scholar 

  • Tabata, Y., Domb, A., and Langer, R. 1994, Injectable polyanhydride granules provide controlled release of water-soluble drugs with a reduced initial burst. J. Pharm. Sci. 83: 5–11.

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, Y. 1996, Thyrotropin-releasing hormone (Protirelin): Role in the treatment of epilepsy. CNS Drugs 6: 341–350.

    Article  CAS  Google Scholar 

  • Thome, R.G., Emory, CR., Ala, T.A., and Frey, W.H., 2nd. 1995, Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Res. 692: 278–282.

    Article  Google Scholar 

  • Ujihara, H., Renming, X., Sasa, M., Ishihara, K., Fujita, Y., Yoshimura, M., Kishimoto, T., Serikawa, T., Yamada, J., and Takaori, S. 1991, Inhibition by thyrotropin-releasing hormone of epileptic seizures in spontaneously epileptic rats. European J. Pharm. 196: 15–19.

    Article  CAS  Google Scholar 

  • Uribe, R.M., Joseph-Bravo, P., Ponce, G., Cisneros, M., Aceves, C., and Charli, J.L. 1994, Influence of thyroid status on TRH metabolism in rat olfactory bulb. Peptides 15: 435–439.

    Article  PubMed  CAS  Google Scholar 

  • Wan, R.Q., Noguera, E.C., and Weiss, S.R. 1998, Anticonvulsant effects of intrahippocampal injection of TRH in amygdala kindled rats. Neuroreport 9: 677–682.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, K., Mori, A., and Otsuki, S. 1990, Changes in brain thyrotropin-releasing hormone (TRH) of seizure-prone El mice. Exptl. Neurol. 108: 71–75.

    Article  CAS  Google Scholar 

  • Yatsugi, S., and Yamamoto, M. 1991, Anticonvulsive properties of YM-14673, a new TRH analogue, in amygdaloid-kindled rats. Pharmacol. Biochem. Behav. 38: 669–672.

    Article  PubMed  CAS  Google Scholar 

  • Zarate, A., Villalobos, H., Canales, E.S., Soria, J., Arcovedo, F., and MacGregor, C. 1976, The effect of oral administration of thyrotropin-releasing hormone on lactation. J. Clin. Endocrinol. Metab. 43: 301–305.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kubek, M.J., Ringel, I., Domb, A.J. (2001). Issues Related to Intranasal Delivery of Neuropeptides to Temporal Lobe Targets. In: Kobiler, D., Lustig, S., Shapira, S. (eds) Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0579-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0579-2_26

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5141-2

  • Online ISBN: 978-1-4615-0579-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics