Skip to main content

Introduction to Soil Erosion and Landscape Evolution Modeling

  • Chapter
Landscape Erosion and Evolution Modeling

Abstract

Landscapes evolve under the influence of a complex suite of natural processes, many of which may be either directly or indirectly influenced by land use. Soil erosion is a natural landscape process of critical concern to many land management agencies. As a geomorphic process, soil erosion can be generally defined as the detachment and transport of in-situ soil particles by three natural agents — water (in liquid or ice form), wind, and gravity (down slope movement). The consequences of soil erosion are both the removal and loss of soil particles from one location and their subsequent deposition in another location, either on the land surface or in an adjoining watercourse. A single soil particle may undergo multiple cycles of removal and deposition over time spans ranging from a single-event (e.g., hours) to geologic time (e.g., decades or centuries). Naturally occurring soil erosion processes (detachment, transport, deposition) can be accelerated by anthropogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beasley, DB, and Huggins, LF, 1991, ANSWERS Users Manual, Agric. Eng. Dept., Univ. Georgia, Coastal Plain Experiment Station, Pub.: 5, Tifton, Georgia: 55 p.

    Google Scholar 

  • Brooks, KN, Folliott, PF, Gregersen, HM, and Thames, JL, 1991, Hydrology and the Management of Watersheds, Iowa State Univ. Press, Ames, Iowa: 392 p.

    Google Scholar 

  • Doe, WW III, 1992, Simulation of the Spatial and Temporal Effects of Army Maneuvers on Watershed Response, PhD Thesis, Colorado State Univ., Fort Collins, Colorado.

    Google Scholar 

  • Doe, WW III, Saghafian, B, and Julien, PY, 1996, Land-Use Impact on Watershed Response:The Integration of Two-dimensional Hydrologic Modelling and Geographical Information Systems, Hydrol. Proc., 10: 1503–1511.

    Article  Google Scholar 

  • Doe, WW III, Julien, PY, and Ogden, FL, 1997, Maneuversheds and Watersheds: Modeling the Hydrologic Effects of Mechanized Training on Military Lands,in Proceedings,American Water Resources Association Summer Symposium on Water Resources Education, Training and Practice: Opportunities for the Next Century, Keystone, Colorado: 767–776.

    Google Scholar 

  • Flanagan, DC, and Nearing, MA, eds., 1995, USDA-Water Erosion Prediction Project (WEPP) — Technical Documentation, National Soil Erosion Research Laboratory Rept. 10, USDA-ARS-MWA, West Lafayette, Indiana.

    Google Scholar 

  • Haan, CT, Johnson, HP, and Brakensiek, DL, 1982, Hydrologic Modeling of Small Watersheds, Am. Soc. Agric. Eng., Monogr. 5, Am. Soc. Agric. Eng., St. Joseph, Missouri: 379p.

    Google Scholar 

  • Hagen, LI, and Foster, GR, 1990, Soil erosion prediction technology, in Proceedings for Soil Erosion and Productivity Workshop (WE Larson, GR Foster, RR Allmaras and CM Smith, eds.) Univ. Minnesota Press, Saint Paul, Minnesota: 117–135.

    Google Scholar 

  • Lal, R, 1994, Soil Erosion Research Methods, St. Lucie Press, Delray Beach, Florida: 34Op.

    Google Scholar 

  • Maidment, DR, 1996, Environmental Modeling with GIS, in GIS and Environmental Modeling: Progress and Research Issues (MF Goodchild, LT Steyaert, BO Parks, CA Johnston, DR Maidment, MP Crane, and S Glendinning, eds.), GIS World Books, Fort Collins, Colorado: 315–323.

    Google Scholar 

  • Nearing, MA, Lane, LJ, and Lopes, VL, 1994, Modeling soil erosion: in Soil Erosion Research Methods (R Lal, ed.), Conservation Society, Lucie Press: 127–156.

    Google Scholar 

  • Warren, SD, Mitasova, H, Jourdan, MR, Brown, WM, Johnson, BE, Johnston, DM, Julien, PY, Mitas, L, Molnar, DK, and Watson, CC, 2000, Digital Terrain Modelling and Distributed Soil Erosion Simulation/Measurement for Minimizing Environmental Impacts of Military Training (CS-752): Technical Report, Center for Ecological Management of Military Lands, Colorado State University, Fort Collins, Colorado: 65p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Doe, W.W., Harmon, R.S. (2001). Introduction to Soil Erosion and Landscape Evolution Modeling. In: Harmon, R.S., Doe, W.W. (eds) Landscape Erosion and Evolution Modeling. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0575-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0575-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5139-9

  • Online ISBN: 978-1-4615-0575-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics