Advertisement

Surface Modification by Ion Assisted Reaction

  • S. K. Koh
  • Y. W. Beag
  • W. K. Bang
  • S. Han
  • J. S. Cho
  • K. H. Kim

Abstract

Surface characteristics of polymers determine their interfacial properties and technological applications. There have been many attempts to modify the surface of polymers to improve wettability, dye printing and adhesion to other materials. Plasma technology, high energy ion beam irradiation, corona discharge and other techniques have been used. However, rough surface and/or surface damage such as bond scission, carbonization, crosslinking, etc. are produced by the above methods. A coating of a surfactant was found to be relatively successful in enhancing the wettability of polymers, but a lifetime of the surfactant is too short for practical use. Therefore, new surface modification method is demanded to get the polymer surfaces free of the surface damage and having good wettability with a long lifetime. Koh et al 1–3) successfully modified hydrophobic surface of polymers into hydrophilic one by the combination of a low energy ion beam and reactive gas environment, and they named this surface modification method “Ion Assisted Reaction (IAR)”. They also reported that the activated polymer surfaces irradiated by energetic ions induce a chemical reaction with reactive gas, and new formed bonds such as carboxyl, carbonyl, hydroxyl, and ester radicals improve wettability and adhesion to other materials.

Keywords

Contact Angle Hydrophilic Functional Group Poly Carbonate PTFE Surface Treated Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.K. Koh, W.K. Choi, J.S. Cho, S.K. Song, J. Mater. Res., 11, 2933 (1991)CrossRefGoogle Scholar
  2. 2.
    S. Han, S. K. Koh and K. H. Yoon, J. Electrochem. Soc. 146, 4327 (1999).CrossRefGoogle Scholar
  3. 3.
    S. C. Choi, S. Han, W. K. Choi, H. J. Jung and S. K. Koh, Nucl. Instr. And Meth. B 152, 291 (1999).Google Scholar
  4. 4.
    R. P. Livi, Nucl. Instr. And Meth. B 10/11, 545 (1985).Google Scholar
  5. 5.
    S. Jacobson, B. Johonson, B. Sundqvist, Thin Solid Films 107, 89 (1982).CrossRefGoogle Scholar
  6. 6.
    J. E. Griffith, Y. Qiu, T. A. Tombrello, Nucl. Instr. And Meth. 198, 607 (1982).CrossRefGoogle Scholar
  7. 7.
    T. A. Tobrello, Nucl. Instr. And Meth. 218, 679 (1983).CrossRefGoogle Scholar
  8. 8.
    R. Flitsch, D. Y. Shi, J. Vac. Sci. Technol. A8(3), 2376 (1990).Google Scholar
  9. 9.
    C. R. Wie, C. R. Shi, M. H. Mendenshall, R. P. Livi, T. Vreeland, T. A. Tombrello, Nucl. Instr. And Meth. B9, 20 (1985).Google Scholar
  10. 10.
    I. V. Mitchell, J. S. Williams, P. Smith, R. G. Elliam, Appl. Phys. Lett. 44(2), 193 (1984).CrossRefGoogle Scholar
  11. 11.
    A. M. Wrobel, M. Kryszewski, W. Rakowski, M. Okoniewski, Z. Kubacki, Polymer 19 908 (1978).CrossRefGoogle Scholar
  12. 12.
    N. Inagaki, S. Tasaka, T. Horiuchi, and R. Suyama, J. Appl. Poly. Sci., 68, 271 (1998)CrossRefGoogle Scholar
  13. 13.
    C. Chang, J. E. E. Baglin, A. G. Schrott, and K. C. Lin, Appl. Phys. Lett.,51, 103 (1987).CrossRefGoogle Scholar
  14. 14.
    S. K. Koh, W. K. Choi, J. S. Cho, and S. K. Song, J. Mater. Res., 11, 2993 (1996).CrossRefGoogle Scholar
  15. 15.
    G. A. Ingemarsson, M. P. Keane, and U. Gelius, J. Appl. Phys., 66, 3548 (1989).CrossRefGoogle Scholar
  16. 16.
    G. A. Hishmeh, T. L. Bar, A. Sklyarov, and S. Hardcastle, J. Vac. Sci. Technol., A13, 1330 (1996).Google Scholar
  17. 17.
    R. Michael and D. Stulik, J. Vac. Sci. Technol., A4, 1861 (1986).Google Scholar
  18. 18.
    D. T. Clark and A. Dilks, J. Polym., Sci., 17, 957 (1979).CrossRefGoogle Scholar
  19. 19.
    E. H. Adem, S. J. Bean, C. M. Demanet, A. Le Moel, and C. M. Duraud, Nucl. Instrum. Meth., B32, 182 (1988).Google Scholar
  20. 20.
    L. Torrisi and R. Percolla, Nucl. Instrum. Meth., B117, 387 (1996).Google Scholar
  21. 21.
    L. Torrisi, G. Ciavola, R. Percolla, and F. Benyaich, Nucl. Instrum. Meth., B116, 473 (1996).Google Scholar
  22. 22.
    L. Torrisi, G. Ciavola, G. Foti and R. Percolla, Nucl. Instrum. Meth., A382, 361 (1996).Google Scholar
  23. 23.
    C. R. Ginnard and W. M. Riggs, Anal. Chem.,44, 1310 (1972).CrossRefGoogle Scholar
  24. 24.
    B. M. Callen, M. L. Ridge, S. Lahooti, A. W. Neumann, and R. N. S. Sohdi, J. Vac. Sci. Technol., A13, 2023 (1995).Google Scholar
  25. 25.
    Yu. I. Mitchenko, V. A. Frnin, and A. S. Chegolya, J. Appl. Polym. Sci., 41, 2561 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • S. K. Koh
    • 1
    • 2
  • Y. W. Beag
    • 1
  • W. K. Bang
    • 2
  • S. Han
    • 1
  • J. S. Cho
    • 1
  • K. H. Kim
    • 1
  1. 1.Thin Film Technology Research CenterKorea Institute of Science and TechnologySeoulKorea
  2. 2.P&I CorporationSeoulKorea

Personalised recommendations