Hamlet — A Complex from Human Milk that Induces Apoptosis in Tumor Cells but Spares Healthy Cells

  • Malin Svensson
  • Caroline Düringer
  • Oskar Hallgren
  • Ann-Kristine Mossberg
  • Anders Håkansson
  • Sara Linse
  • Catharina Svanborg
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 503)


Breast-feeding has been proposed to protect both mother and child against cancer. The overall incidence of childhood cancer is reduced in breast-fed compared to bottle-fed individuals and decreases with the length of breast-feeding. Davis et al. compared 201 children diagnosed with cancer at an age of 1.5–15 years to 181 matched healthy controls, and found a crude odds ratio of 1.75 favoring infants breast-fed longer that 6 months.1 The epidemiological association was especially strong for lymphomas (crude odds ratio 5.62). This association has been verified in several other studies (reviewed in).2


Human Milk Follicular Lymphoma Childhood Cancer Crude Odds Ratio Molten Globule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.K. Davis, D.A. Savitz, and B.I. Graubard, Infant feeding and childhood cancer, Lancet 2 (8607):365–368 (1988).Google Scholar
  2. 2.
    M.K. Davis, Review of the evidence for an association between infant feeding and childhood cancer, Int. J. Cancer Suppl. 11:29–33 (1998).PubMedCrossRefGoogle Scholar
  3. 3.
    H.A. McKenzie, and F.H. White, Jr., Lysozyme and alpha-lactalbumin: structure, function, and interrelationships, Adv. Protein Chem. 41:173–315 (1991).PubMedCrossRefGoogle Scholar
  4. 4.
    K.R. Acharya, J.S. Ren, D.I. Stuart, D.C. Phillips, and R.E. Fenna, Crystal structure of human alphalactalbumin at 1.7 A resolution, J. Mol. Biol. 221:(2), 571–581 (1991).PubMedCrossRefGoogle Scholar
  5. 5.
    B.P. Ram, and D.D. Munjal, Galactosyltransferases: physical, chemical, and biological aspects, CRC Crit. Rev. Biochem. 17:(3), 257–311 (1985).CrossRefGoogle Scholar
  6. 6.
    M. Svensson, H. Sabharwal, A. Hakansson, A.K. Mossberg, P. Lipniunas, H. Leffler, C. Svanborg, and S. Linse, Molecular characterization of alpha-lactalbumin folding variants that induce apoptosis in tumor cells, J. Biol. Chem. 274 (10):6388–6396 (1999).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Håkansson, B. Zhivotovsky, S. Orrenius, H. Sabharwal, and C. Svanborg, Apoptosis induced by a human milk protein, Proc. Natl. Acad. Sci. USA 92 (17):8064–8068 (1995).PubMedCrossRefGoogle Scholar
  8. 8.
    K. Kuwajima, The molten globule state of alpha-lactalbumin, FASEB J 10 (1):102–9 (1996).PubMedGoogle Scholar
  9. 9.
    E.A. Permyakov, and L.J. Berliner, Alpha-Lactalbumin: structure and function, FEBS Lett 473 (3):269–274 (2000).PubMedCrossRefGoogle Scholar
  10. 10.
    O.B. Ptitsyn, Molten globule and protein folding, Adv. Protein Chem. 47:83–229 (1995).PubMedCrossRefGoogle Scholar
  11. 11.
    T.E. Creighton, How important is the molten globule for correct protein folding?, Trends Biochem. Sci. 22 (1):6–10 (1997).PubMedCrossRefGoogle Scholar
  12. 12.
    A.T. Alexandrescu, P.A. Evans, M. Pitkeathly, J. Baum, and C.M. Dobson, Structure and dynamics of the acid-denatured molten globule state of a-lactalbumin: A two-dimentional NMR study, Biochemistry 32:1707–1718 (1993).PubMedCrossRefGoogle Scholar
  13. 13.
    M. Svensson, A. Hakansson, A. Mossberg, S. Linse, and C. Svanborg, Conversion of alpha -lactalbumin to a protein inducing apoptosis [In Process Citation], Proc. Natl. Acad. Sci. USA 97 (8):4221–4226 (2000).PubMedCrossRefGoogle Scholar
  14. 14.
    A.H. Wyllie, J.F. Kerr, and A.R. Currie, Cell death: the significance of apoptosis, Int. Rev. Cytol. 68 251306 (1980).Google Scholar
  15. 15.
    J.F.R. Kerr, A.H. Wyllie, and A.R. Currie, Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics, Br J Cancer 26:239–257 (1972).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Raff, Cell suicide for beginners, Nature 396 (6707):119–122 (1998).PubMedCrossRefGoogle Scholar
  17. 17.
    A.H. Wyllie, Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation, Nature 284:555–556 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    B. Zhivotovsky, B. Cedervall, S. Jiang, P. Nicotera, and S. Orrenius, Involvement of Ca2+ in the formation of high molecular weight DNA fragments in thymocyte apoptosis, Biochem Biophys Res Commun 202 (1):120–127 (1994).PubMedCrossRefGoogle Scholar
  19. 19.
    M.A. Lagarkova, O.V. Iarovaia, and RS.V. azin, Large-scale fragmentation of mammalian DNA in the course of apoptosis proceeds via excision of chromosomal DNA loops and their oligomers, J. Biol. Chem. 270:20239–20241 (1995).PubMedCrossRefGoogle Scholar
  20. 20.
    E.S. Alnemri, D.J. Livingston, D.W. Nicholson, G. Salvesen, N.A. Thornberry, W.W. Wong, and J. Yuan, Human ICE/CED-3 protease nomenclature, Cell 87 (2):171 (1996).PubMedCrossRefGoogle Scholar
  21. 21.
    N.A. Thomberry and Y. Lazebnik, Caspases: enemies within, Science 281:(5381), 1312–1316 (1998).CrossRefGoogle Scholar
  22. 22.
    A. Rosen, and L. Casciola-Rosen, Macromolecular substrates for the ICE-like proteases during apoptosis, J. Cell Biochem. 64 (1):50–54 (1997).PubMedCrossRefGoogle Scholar
  23. 23.
    S.J. Martin, G.A. O’Brien, W.K. Nishioka, A.J. McGahon, A. Mahboubi, T.C. Saido, and D.R. Green, Proteolysis of fodrin (non-erythroid spectrin) during apoptosis, J. Biol. Chem. 270 (12):6425–6428 (1995).PubMedCrossRefGoogle Scholar
  24. 24.
    S.B. Brown, K. Bailey, and J. Savill, Actin is cleaved during constitutive apoptosis, Biochem. J. 323 (Pt 1):233–237 (1997).PubMedGoogle Scholar
  25. 25.
    C. Gueth-Hallonet, K. Weber, and M. Osborn, Cleavage of the nuclear matrix protein NuMA during apoptosis, Ex.p Cell Res. 233 (1):21–24 (1997).CrossRefGoogle Scholar
  26. 26.
    C. Kohler, A. Håkansson, C. Svanborg, S. Orrenius, and B. Zhivotovsky, Protease activation in apoptosis induced by MAL, Exp. Cell Res. 249:260–268 (1999).CrossRefGoogle Scholar
  27. 27.
    C. Adrain, E.A. Slee, M.T. Harte, and S.J. Martin, Regulation of Apoptotic Protease Activating Factor-1 Oligomerization and Apoptosis by the WD-40 Repeat Region, J. Biol. Chem. 274 (30):20855–20860 (1999).PubMedCrossRefGoogle Scholar
  28. 28.
    P. Li, D. Nijhawan, I. Budihardjo, S.M. Srinivasula, M. Ahmad, E.S. Alnemri, and X. Wang, Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade, Cell 91 (4):479–489 (1997).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Pan, K. O’Rourke, and V.M. Dixit, Caspase-9, Bel-XL, and Apaf-1 form a ternary complex, J. Biol. Chem. 273 (10):5841–5845 (1998).PubMedCrossRefGoogle Scholar
  30. 30.
    A. Saleh, S.M. Srinivasula, S. Acharya, R. Fishel, and E.S. Alnemri, Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation, J. Biol. Chem. 274 (25):17941–17945 (1999).PubMedCrossRefGoogle Scholar
  31. 31.
    E.A. Slee, M.T. Harte, R.M. Kluck, B.B. Wolf, C.A. Casiano, D.D. Newmeyer, H.G. Wang, J.C. Reed, D.W. Nicholson, E.S. Alnemri,, D.R. Green, and S.J. Martin, Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9- dependent manner, J. Cell Biol. 144 (2):281–292 (1999).PubMedCrossRefGoogle Scholar
  32. 32.
    Y. Tsujimoto, J. Cossman, E. Jaffe, and C.M. Croce, Involvement of the bd-2 gene in human follicular lymphoma, Science 228 (4706):1440–1443 (1985).PubMedCrossRefGoogle Scholar
  33. 33.
    M.L. Cleary, and J. Sklar, Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18, Proc. Natl. Acad. Sci. USA 82 (21):7439–7443 (1985).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Bakhshi, J.P. Jensen, P. Goldman, J.J. Wright, O.W. McBride, A.L. Epstein, and S.J. Korsmeyer, Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18, Cell 41 (3):899–906 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    J.C. Reed, J.M. Jurgensmeier, and S. Matsuyama, Bd-2 family proteins and mitochondria, Biochim Biophys Acta 1366 (1–2):127–137 (1998)PubMedCrossRefGoogle Scholar
  36. 36.
    G. Kroemer, and J.C. Reed, Mitochondrial control of cell death, Nat. Med. 6 (5):513–519 (2000).PubMedCrossRefGoogle Scholar
  37. 37.
    A.Gross, J.M,McDonnell, and S.J.Korsmeyer, BCL-2 family members and the mitochondria in apoptosis, Genes Dev. 13 (15):1899–1911 (1999).PubMedCrossRefGoogle Scholar
  38. 38.
    D.R. Green, and J.C. Reed, Mitochondria and apoptosis, Science 281 (5381), 1309–1312 (1998).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Malin Svensson
    • 1
  • Caroline Düringer
    • 1
  • Oskar Hallgren
    • 1
  • Ann-Kristine Mossberg
    • 1
  • Anders Håkansson
    • 1
  • Sara Linse
    • 1
    • 2
  • Catharina Svanborg
    • 1
  1. 1.Department of Microbiology, Immunology and Glycobiology (MIG), Institute of Laboratory MedicineLund UniversityLundSweden
  2. 2.Department of Physical Chemistry 2Lund UniversityLundSweden

Personalised recommendations