Skip to main content

Abstract

This chapter describes several linear feedback control techniques that can be used to robustly control flexible dynamic systems. As with any dynamic system, it is often difficult to accurately model the system with enough fidelity that open loop control performs as intended. Because modeling errors are often unavoidable, linear feedback is often used to compensate for these modeling uncertainty. Even though many of the flexible dynamic systems are nonlinear, their models can be adequately linearized about operating points and standard linear feedback control techniques can be applied with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. F. Jones, B. J. Petterson, and J. C. Werner, “Swing damped movement of suspended objects,” Sandia Report 87-2189, Reprinted February 1993.

    Google Scholar 

  2. B. C. Kuo, Automatic Control Systems, 4th Ed., Prentice-Hall, 1982.

    Google Scholar 

  3. B. J. Petterson, R. D. Robinett, and J. C. Werner, “Lag-stabilized force feedback damping,” SAND91-0194, May 1991.

    Google Scholar 

  4. J. Roskam, Airplane Flight Dynamics and Automatic Flight Controls: Part II, Roskam Aviation and Engineering Corporations, Lawrence, Kansas, 1979.

    Google Scholar 

  5. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes: The Art of Scientific Computing, Univ. Press, Cambridge, 1988.

    MATH  Google Scholar 

  6. R. D. Robinett, B. J. Petterson, and J. C. Fahrenholtz, “Lag-stabilized force feedback damping,” Journal of Intelligent and Robotic Systems, 21: 277–285, 1998.

    Article  MATH  Google Scholar 

  7. C. Abdallah, P. Dorato, J. Benitez-Read, and R. Byrne, “Delayed positive feedback can stabilize oscillatory systems,” Proceeding of the American Control Conference, San Francisco, CA, pp. 3106–7, 1993.

    Google Scholar 

  8. R. H., Jr. Cannon, and Schmitz, E., “Initial experiments on the end-point control of a flexible one-link robot,” International Journal of Robotics Research, 3(3):62–75, 1984.

    Article  Google Scholar 

  9. C. M. Oakley, and R. H. Cannon, “Anatomy of an experimental two-link flexible manipulator under end-point control,” In proceedings of the IEEE Conference on Decision and Control, Honolulu, HI, Dec. 1990.

    Google Scholar 

  10. C. M. Oakley, and C. H. Barratt, “End-point controller design for an experimental two-link flexible manipulator using convex optimization,” In proceedings of the American Control Conference, pages 1752–1759, San Diego, CA, May 1990.

    Google Scholar 

  11. P. A. Chodovarapu, and M. W. Spong, “On non-collocated control of a single flexible link,” Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, April 1996, pp. 1101–1106.

    Google Scholar 

  12. M. Karkoub, and K. Tamma, “Modelling and µ-synthesis control of flexible manipulators,” Computers and Structures 79 (2001), pp. 543–551.

    Article  Google Scholar 

  13. J. T. Feddema, G. R. Eisler, and D. J. Segalman, “Integration of Model-Based and Sensor-Based Control of a Two-link Flexible Robot Arm,” Proceedings of the 1990 IEEE Conference on Systems Engineering, Pittsburgh, PA, August 9–11, 1990.

    Google Scholar 

  14. R. F. Stengel, Stochastic Optimal Control: Theory and Application, John Wiley & Sons, Inc., 1986.

    Google Scholar 

  15. P. S. Maybeck, Stochastic Models, Estimation, and Control, Volume 1, Academic Press, New York, 1979.

    Google Scholar 

  16. A. E. Bryson, and Y. Ho, Applied Optimal Control, Hemisphere Publishing Corporation, Washington, D.C., 1975.

    Google Scholar 

  17. B. D. O. Anderson, and J. B. Moore, Optimal Control: Linear Quadratic Methods, Prentice-Hall, New Jersey, 1990.

    MATH  Google Scholar 

  18. E. D. Sontag, Mathematical Control Theory: Deterministic Finite Dimensional Systems, Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  19. F. L. Lewis, Optimal Estimation: With an Introduction to Stochastic Control Theory, John Wiley & Sons, Inc., New York, 1986.

    MATH  Google Scholar 

  20. K. J. Astrom, Introduction to Stochastic Control Theory, Academic Press, New York, 1970.

    Google Scholar 

  21. B. D. O. Anderson, and J. B. Moore, Optimal Filtering, Prentice-Hall Information and System Sciences Series, 1979.

    MATH  Google Scholar 

  22. J. L. Junkins, An Introduction to Optimal Estimation of Dynamic Systems, Sijhhof & Noordhoff International Publishers, The Netherlands, 1978.

    Book  Google Scholar 

  23. R. E. Kalman, and R. S. Bucy, “New results in linear filtering and prediction theory,” Transactions of ASME, Journal of Basic Engineering, Vol. 83, pp. 95–107, 1961.

    Article  MathSciNet  Google Scholar 

  24. P. A. Ruymgaart, and T. T. Soong, Mathematics of Kalman-Bucy Filtering, Springer-Verlag, New York, 1988.

    Book  MATH  Google Scholar 

  25. D. A. Schoenwald, J. T. Feddema, G. R. Eisler, and D. J. Segalman, “Minimum-Time Trajectory Control of Two-Link Flexible Robotic Manipulator,” Proceedings of the 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, April 1991, pp. 2114–2120.

    Google Scholar 

  26. D. J. Segalman, “A mathematical formulation for the rapid simulation of a flexible multilink manipulator,” SAND89-2308, Sandia National Laboratories, Albuquerque, NM.

    Google Scholar 

  27. T. J. Tarn, A. K. Bejczy, and X. Ding, “On the modelling of flexible robot arms,” Department of Systems Science and Mathematics, Washington University, St. Louis, MO, Robotics Laboratory Report SSM-RL-88-11, September 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Robinett, R.D. et al. (2002). Linear Feedback Control. In: Flexible Robot Dynamics and Controls. International Federation for Systems Research International Series on Systems Science and Engineering, vol 19. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0539-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0539-6_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5122-1

  • Online ISBN: 978-1-4615-0539-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics