Input Shaping for Path Planning

  • Rush D. RobinettIII
  • Clark R. Dohrmann
  • G. Richard Eisler
  • John T. Feddema
  • Gordon G. Parker
  • David G. Wilson
  • Dennis Stokes
Part of the International Federation for Systems Research International Series on Systems Science and Engineering book series (IFSR, volume 19)


Input shaping is an effective way to optimize the performance of robots, flexible structures, spacecraft, telescopes, and other systems that have vibration, control authority, tracking, and/or pointing constraints. These constraints along with the dynamics and kinematics of the system under consideration can be included in a trajectory optimization/path planning procedure to ensure that the system meets the desired performance. Input shaping is particularly useful when the closed-loop controller cannot be modified or tuned. For example, many pedestal-based robots have closed architecture control systems that restrict access to the servo-loop controls. This chapter begins with the overhead gantry robot and a vibration constraint referred to as swing-free input shaping.


Path Planning Infinite Impulse Response Finite Impulse Response Filter Input Shaping Acceleration Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 5 References

  1. 1.
    N. C. Singer, “Residual vibration reduction in computer controlled machines,” Technical Report AI-TR 1030, MIT Artificial Intelligence Laboratory, Cambridge, MA, January 1989.Google Scholar
  2. 2.
    A. D. Christian, “Design and implementation of a flexible robot,” Technical Report AI-TR 1153, MIT Artificial Intelligence Laboratory, Cambridge, MA, August 1989.Google Scholar
  3. 3.
    S. Yurkovich, A. Tzes, I. Lee, and K. Hillsley, “Control and system identification of a two-link flexible manipulator,” Proceedings of the 1990 IEEE International Conference on Robotics and Automation, pp. 1626–1631, Cincinnati, OH, May 13–19, 1990.Google Scholar
  4. 4.
    B. R. Murphy, and I. Watanabe, “Digital shaping filters for reducing machine vibration,” IEEE Transactions on Robotics and Automation, vol. 8, no. 2, pp. 285–289, April 1992.CrossRefGoogle Scholar
  5. 5.
    R. Khorrami, “Analysis of multi-link flexible manipulators via asymptotic expansions,” Proceedings of the 28th IEEE Conference on Decision and Control, pp. 2089–2094, Tampa, FL, December 1989.Google Scholar
  6. 6.
    E. Bayo, P. Papadopoulos, J. Stubbe, and M. A. Serna, “Inverse dynamics and kinematics of multi-link elastic robots: An iterative frequency domain approach,” The International Journal of Robotics Research, Vol. 8, No. 6, December 1989.Google Scholar
  7. 7.
    J. T. Feddema, “Digital filter control of remotely operated flexible robotic structures,” Proceedings of the 1993 American Control Conference, San Francisco, pp. 2710–2715, June 2–4, 1993.Google Scholar
  8. 8.
    G. F. Franklin, J. D. Powell, and M. L. Workman, Digital Control of Dynamic Systems, 2nd Edition, Addison-Wesley Publishing Company, 1990.Google Scholar
  9. 9.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetteling, Numerical Recipies in C, Cambridge University Press, Cambridge, MA, 1988, pp. 540–547.Google Scholar
  10. 10.
    P. E. Gill, et al., Practical Optimization, Academic Press, 1981.Google Scholar
  11. 11.
    M.J. Hopper, Harwell Subroutine Library, AERE-R9185, UKAEA, Harwell, UK, 1978.Google Scholar
  12. 12.
    M. A. Branch, and A. Grace, MATLAB®:Optimization Toolbox, Version 1.5, User’s Guide, The Math Works Inc., Natick, MA.Google Scholar
  13. M. J. D. Powell, “A fast algorithm for nonlinearly constrained optimization calculations,” Numerical Analysis, ed. G.A. Watson, Lecture Notes in Mathematics, Springer-Verlag, Vol. 630, 1978.Google Scholar
  14. 14.
    C. Bischof, et al., ADIFOR 2.0 User’s Guide. Revision C, Technical Report CRPC-95516–S, August 1995, Argonne National Laboratory, Argonne, IL.CrossRefGoogle Scholar
  15. 15.
    G. R. Eisler, et al., “Approximate optimal trajectories for flexible-link manipulator trajectories for flexible-Link manipulator slewing using recursive quadratic programming,” Journal of Dynamic Systems, Measurement, and Control, Vol. 115, pp. 405–410, 1993.Google Scholar
  16. 16.
    R. L. Mayes, (1991), “Experimental characterization of flexible two link robot arm,” Internal Memorandum, Sandia National Laboratories.Google Scholar
  17. 17.
    R. D. Robinett, (1987), “A unified approach to vehicle design, control, and flight path optimization,” The Center for Strategic Technology, Texas A&M Univeristy, SS87–1, 1987.Google Scholar
  18. 18.
    J. L. Junkins, and J. P. Dunyak, (1982), “Continuation methods for enhancement of optimization algorithms,” 19th Annual Meeting of the Society of Engineering Science, University of Missouri-Rolla, October, 1982.Google Scholar
  19. 19.
    E. B. Meier, and A. E. Bryson, (1990), “Efficient algorithm for time-optimal control of a two-link manipualtor,” Journal of Guidance, Controls, and Dynamics, Vol. 13, Sept.-Oct., 1990, pp. 859–866.MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    N. K. Hecht, and J. L. Junkins, (1991), “Time-optimal reference maneuvers for a flexible arm,” 1991 AIAA Guidance, Navigation, and Control Conference, New Orleans, Vol. 3, pp. 1592–1598.Google Scholar
  21. 21.
    G. G. Parker, G. R. Eisler, J. Phelan, and R. D. Robinett, jr., “Input shaping for vibration-damped slewing of a flexible beam using a heavy-lift hydraulic robot,” SAND report 94-1702C, Sandia National Laboratories, 1994Google Scholar
  22. 22.
    J. C. Dunn, and D. P. Bertsekas, “Efficient dynamic programming implementations of Newton’s method for unconstrained optimal control problems,” Journal of Optimization Theory and Applications, Vol. 63, No. 1, pp. 23–38, 1989.MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    C. R. Dohrmann, and R. D. Robinett, “Efficient sequential quadratic programming implementations for equality-constrained discrete-time optimal control,” Journal of Optimization Theory and Applications, Vol. 95, No. 2, pp. 323–46, 1997.MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    C. R. Dohrmann, and R.D. Robinett, “Dynamic programming method for discrete-time optimal control,” Journal of Optimization Theory and Applications, Vol. 101, No. 2, pp. 259–283, 1999.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    R. E. Bellman, An Introduction to the Theory of Dynamic Programming, Rand Corporation, 1953.Google Scholar
  26. 26.
    R. E. Bellman, Dynamic Programming, Princeton University Press, New Jersey, 1957.MATHGoogle Scholar
  27. 27.
    R. E. Bellman, Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1962.MATHGoogle Scholar
  28. 28.
    S. E. Dreyfus, Dynamic Programming and the Calculus of Variations, Academic Press, New York, 1965.MATHGoogle Scholar
  29. 29.
    C. T. Chen, Linear System Theory and Design, Holt, Rinehart & Winston, Inc. p. 142, 1984.Google Scholar
  30. 30.
    C.R. Dohrmann, and R. D. Robinett, “Robot trajectory planning via dynamic programming,” Proceedings of the Fifth International Symposium on Robotics and Manufacturing, and Applications, Maui, HI, pp. 75–81, 1994.Google Scholar
  31. 31.
    M. W. Spong, and M. Vidyasagar, Robot Dynamics and Control, John Wiley and Sons, New York, 1989.Google Scholar
  32. 32.
    B. J. Petterson, and R. D. Robinett, “Model-based damping of coupled horizontal and vertical oscillations in a flexible rod,” Journal of Intelligent and Robotic Systems, Vol. 4, pp. 285–299, 1991.CrossRefGoogle Scholar
  33. 33.
    J. Ben-Asher, J. A. Burns, and E. M. Cliff, “Time-optimal slewing of flexible spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 15, No. 2, pp. 360–367, March-April 1992.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Rush D. RobinettIII
    • 1
  • Clark R. Dohrmann
    • 1
  • G. Richard Eisler
    • 1
  • John T. Feddema
    • 1
  • Gordon G. Parker
    • 2
  • David G. Wilson
    • 3
  • Dennis Stokes
    • 4
  1. 1.Sandia National LaboratoriesUSA
  2. 2.Michigan Technological UniversityHoughtonUSA
  3. 3.WAYA Research, Inc.AlbuquerqueUSA
  4. 4.S. EnterprisesTacomaUSA

Personalised recommendations