Ontogeny of the pituitary corticotroph system

  • Maria Nudi
  • Éric Batsché
  • Jacques Drouin
Part of the Endocrine Updates book series (ENDO, volume 21)


The pituitary corticotroph cells constitute the central link integrating signals from the brain and periphery to control production of glucocorticoids. Corticotrophs represent one of the two pituitary lineages expressing proopiomelanocortin (POMC). In corticotrophs, POMC is processed into adrenocorticotropin (ACTH) which is the principal regulator of adrenal glucocorticoid synthesis. The other pituitary POMC-expressing lineage is the melanotrophs located in the intermediate lobe of rodents. In these cells, POMC is processed further such that a-melanocyte stimulating hormone (aMSH) is produced instead of ACTH. The single copy POMC gene is expressed in both pituitary lineages but under different developmental and hormonal regulatory pathways. At the cellular level, this regulation is exerted by transcription factors that regulate both POMC transcription and cell differentiation.


Leukemia Inhibitory Factor Orphan Nuclear Receptor POMC Gene bHLH Factor Pituitary Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Japon MA, Rubinstein M, Low MJ 1994 In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J Histochem Cytochem 42:1117–1125PubMedCrossRefGoogle Scholar
  2. 2.
    Schwind J 1928 The development of the hypophysis cerebri of the albino rat. Am J Anat 41:295–319CrossRefGoogle Scholar
  3. 3.
    Couly GF, Le Douarin NM 1985 Mapping of the early neural primordium in quail-chick chimeras. I. Developmental relationships between placodes, facial ectoderm, and prosencephalon. Dev Biol 110:422–439PubMedCrossRefGoogle Scholar
  4. 4.
    Kikuyama S, Inaco H, Jenks BG, Kawamura K 1993 Development of the ectopically transplanted primordium of epithelial hypophysis (anterior neural ridge) in Bufo japonicus embryos. J Exp Zool 266(3):216–220PubMedCrossRefGoogle Scholar
  5. 5.
    Kouki T, Imai H, Aoto K et al 2001 Developmental origin of the rat adenohypophysis prior to the formation of Rathke’s pouch. Development 128(6):959–963PubMedGoogle Scholar
  6. 6.
    Daikoku S, Chikamori M, Adachi T, Maid Y 1982 Effect of the basal diencephalon on the development of Rathke’s pouch in rats: a study in combined organ cultures. Dev Biol 90:198–202PubMedCrossRefGoogle Scholar
  7. 7.
    Ericson J, Norlin S, Jessell TM, Edlund T 1998 Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125(6):1005–1015PubMedGoogle Scholar
  8. 8.
    Treier M, Gleiberman AS, O’Connell SM et al 1998 Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12(11):1691–1704PubMedCrossRefGoogle Scholar
  9. 9.
    Takuma N, Sheng HZ, Furuta Y et al 1998 Formation of Rathke’s pouch requires dual induction from the diencephalon. Development 125(23):4835–4840PubMedGoogle Scholar
  10. 10.
    Yamasaki M, Miyake A, Tagashira S, Itoh N 1996 Structure and expression of the rat mRNA encoding a novel member of the fibroblast growth factor family. J Biol Chem 271(27):15918–15921PubMedCrossRefGoogle Scholar
  11. 11.
    De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C 2000 An important role for the Mb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127(3):483–492PubMedGoogle Scholar
  12. 12.
    Ohuchi H, Hori Y, Yamasaki M et al 2000 FGF10 acts as a major ligand for FGF receptor 2 Mb in mouse multi-organ development. Biochem Biophys Res Commun 277(3):643–649PubMedCrossRefGoogle Scholar
  13. 13.
    Treier M, O’Connell S, Gleiberman A et al 2001 Hedgehog signaling is required for pituitary gland development. Development 128(3):377–386PubMedGoogle Scholar
  14. 14.
    Sheng HZ, Moriyama K, Yamashita T et al 1997 Multistep control of pituitary organogenesis. Science 278(5344):1809–1812PubMedCrossRefGoogle Scholar
  15. 15.
    Sheng HZ, Zhadanov AB, Mosinger B et al 1996 Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272(5264):1004–1007PubMedCrossRefGoogle Scholar
  16. 16.
    Sornson MW, Wu W, Dasen JS et al 1996 Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384(6607):327–333PubMedCrossRefGoogle Scholar
  17. 17.
    Dasen JS, O’Connell SM, Flynn SE et al 1999 Reciprocal interactions of Pitl and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 97(5):587–598PubMedCrossRefGoogle Scholar
  18. 18.
    Gage PJ, Suh HY, Camper SA 1999 Dosage requirement of Pitx2 for development of multiple organs. Development 126(20):4643–4651PubMedGoogle Scholar
  19. 19.
    Lin CR, Kloussi C, O’Connell S et al 1999 Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphegenesis. Nature 401:279–282PubMedCrossRefGoogle Scholar
  20. 20.
    Muccielli ML, Martinez S, Pattyn A, Goridis C, Brunet JF 1996Otlx2anOtxrelated homeobox gene expressed in the pituitary gland and in a restricted pattern in the forebrain. Mol Cell Neurosci 8(4):258–271PubMedCrossRefGoogle Scholar
  21. 21.
    Lanctlit C, Lamolet B, Drouin J 1997 The bicoid-related homeoprotein Ptxl defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 124:2807–2817Google Scholar
  22. 22.
    Lanctot C, Gauthier Y, Drouin J 1999 Pituitary homeobox 1 (Ptxl) is differentially expressed during pituitary development. Endocrinology 140(3):1416–1422PubMedCrossRefGoogle Scholar
  23. 23.
    Szeto DP, Rodriguez-Esteban C, Ryan AK et al 1999 Role of the Bicoid-related homeodomain factor Pitxl in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13(4):484–494PubMedCrossRefGoogle Scholar
  24. 24.
    Suh H, Gage PJ, Drouin J, Camper SA. 2002Pitx2is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development, In pressGoogle Scholar
  25. 25.
    Tremblay JJ, Lanctot C, Drouin J 1998 The pan-pituitary activator of transcription, Ptx-1 (pituitary homeoboxl), acts in synergy with SF-1 and Pitl and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol Endocrinol 12(3):428–441PubMedCrossRefGoogle Scholar
  26. 26.
    Lamonerie T, Tremblay JJ, Land& C, Therrien M, Gauthier Y, Drouin J 1996 PTX1, a bicoid-related homeobox transcription factor involved in transcription of proopiomelanocortin (POMC) gene. Genes Dev 10(10):1284–1295PubMedCrossRefGoogle Scholar
  27. 27.
    Szeto DP, Ryan AK, O’Connell SM, Rosenfeld MG 1996 P-OTX: a PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc Natl Acad Sci USA 93(15):7706–7710PubMedCrossRefGoogle Scholar
  28. 28.
    Lanctot C, Moreau A, Chamberland M, Tremblay ML, Drouin J 1999 Hindlimb patterning and mandible development require thePtxlgene. Development 126:1805–1810.PubMedGoogle Scholar
  29. 29.
    Semina EV, Reiter R, Leysens NJ et al 1996 Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 14(4):392–399PubMedCrossRefGoogle Scholar
  30. 30.
    Yost HJ 2001 Establishment of left-right asymmetry. Int Rev Cytol 203:357–381PubMedCrossRefGoogle Scholar
  31. 31.
    Smidt M, van Schaick HSA, Lanctot C et al 1997 A homeodomain genePTX3has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci USA 94:13305–13310PubMedCrossRefGoogle Scholar
  32. 32.
    Tremblay JJ, Goodyer CG, Drouin J 2000 Transcriptional properties of Ptxl and Ptx2 isoforms. Neuroendocrinol 71:277–286.CrossRefGoogle Scholar
  33. 33.
    Tremblay JJ, Drouin J 1999 Egr-1 is a downstream effector of GnRH and synergizes by direct interaction with Ptx 1 and SF-1 to enhance luteinizing hormone b gene transcription. Mol Cell Biol 19(4):2567–2576PubMedGoogle Scholar
  34. 34.
    Tremblay JJ, Marcil A, Gauthier Y, Drouin J 1999 Ptx 1 regulates SF-1 activity by an interaction that mimics the role of the ligand-binding domain. EMBO J 18(12):3431–3441PubMedCrossRefGoogle Scholar
  35. 35.
    Quirk CC, Lozada KL, Keri RA, Nilson JH 2001 A single Pitxl binding site is essential for activity of the LHbeta promoter in transgenic mice. Mol Endocrinol 15(5):734–746PubMedCrossRefGoogle Scholar
  36. 36.
    Bach I, Carriere C, Ostendorff HP, Andersen B, Rosenfeld MG 1997 A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev 11(11):1370–1380PubMedCrossRefGoogle Scholar
  37. 37.
    Lee JE, Hollenberg SM, Snider L, Turner DL, Lipnick N, Weintraub H 1995 Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268(5212):836–844PubMedCrossRefGoogle Scholar
  38. 38.
    Naya FJ, Stellrecht CMM, Tsai MJ 1995 Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev 9(8):1009–1019PubMedCrossRefGoogle Scholar
  39. 39.
    Poulin G, Turgeon B, Drouin J 1997 NeuroDl/BETA2 contributes to cell-specific transcription of the POMC gene. Mol Cell Biol 17(11):6673–6682PubMedGoogle Scholar
  40. 40.
    Poulin G, Lebel M, Chamberland M, Paradis FW, Drouin J 2000 Specific protein:protein interaction between basic Helix-Loop-Helix transcription factors and homeoproteins of the Pitx family. Mol Cell Biol 20(13):4826–4837PubMedCrossRefGoogle Scholar
  41. 41.
    Oyama K, Sanno N, Teramoto A, Osamura RY 2001 Expression of neuro D1 in human normal pituitaries and pituitary adenomas. Mod Pathol 14(9):892–899PubMedCrossRefGoogle Scholar
  42. 42.
    Liu J, Lin C, Gleiberman A et al 2001 Tbx19, a tissue-selective regulator of POMC gene expression. Proc Natl Acad Sci U S A 98(15):8674–8679PubMedCrossRefGoogle Scholar
  43. 43.
    Pellegrini-Bouiller I, Manrique C, Gunz G et al 1999 Expression of the members of the Ptx family of transcription factors in human pituitary adenomas. J Clin Endocrinol Metab 84(6):2212–2220PubMedCrossRefGoogle Scholar
  44. 44.
    Smith J 1999 T-box genes: what they do and how they do it. Trends Genet 15(4):154–158PubMedCrossRefGoogle Scholar
  45. 45.
    Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH 2000 A novel transcription factor, T-bet, directs Thl lineage commitment. Cell 100(6):655–669PubMedCrossRefGoogle Scholar
  46. 46.
    Lamolet B, Pulichino AM, Lamonerie T et al 2001 A pituitary cell-restricted T-box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell 104:849–859PubMedCrossRefGoogle Scholar
  47. 47.
    Nemeskeri A, Setalo G, Halasz B 1988 Ontogenesis of the three parts of the fetal rat adenohypophysis. A detailed immunohistochemical analysis. Neuroendocrinol 48(5):534–543CrossRefGoogle Scholar
  48. 48.
    Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A 1998 Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat Genet 19(2):155–157PubMedCrossRefGoogle Scholar
  49. 49.
    Burke CW 1985 Adrenocortical insufficiency. Clin Endocrinol Metab 14(4):947–976PubMedCrossRefGoogle Scholar
  50. 50.
    Malpuech G, Vanlieferinghen P, Dechelotte P, Gaulme J, Labbe A, Guiot F 1988 Isolated familial adrenocorticotropin deficiency: prenatal diagnosis by maternal plasma estriol assay. Am J Med Genet 29(1):125–130PubMedCrossRefGoogle Scholar
  51. 51.
    Hentze MW, Kulozik AE 1999 A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96(3):307–310PubMedCrossRefGoogle Scholar
  52. 52.
    Nakanishi S, Inoue A, Kita T et al 1979 Nucleotide sequence of cloned cDNA for bovine corticotropin-beta-lipotropin precursor. Nature 278:423–427PubMedCrossRefGoogle Scholar
  53. 53.
    Drouin J, Goodman HM 1980 Most of the coding region of rat ACTH b-LPH precursor gene lacks intervening sequences. Nature 288:610–613PubMedCrossRefGoogle Scholar
  54. 54.
    Takahashi H, Teranishi Y, Nakanishi S, Numa S 1981 Isolation and structural organization of the human ACTH - b-LPH precursor gene. FEBS Lett 135:97–102PubMedCrossRefGoogle Scholar
  55. 55.
    Notake M, Tobimatsu T, Watanabe Y, Takahashi H, Mishina M, Numa S 1983 Isolation and characterization of the mouse corticotropin-beta-lipotropin precursor gene and a related pseudogene. FEBS Lett 156(1):67–71PubMedCrossRefGoogle Scholar
  56. 56.
    Drouin J, Burbach P, Charron J, Gagner J-P 1983 Expression of the proopiomelanocortin (POMC) gene. J Cell Biochem; Suppl. 7A:107Google Scholar
  57. 57.
    Lundblad JR, Roberts JL 1988 Regulation of proopiomelanocortin gene expression in pituitary. Endocr Rev 9(1):135–158PubMedCrossRefGoogle Scholar
  58. 58.
    Benjannet S, Rondeau N, Day R, Chretien M, Seidah NG 1991 PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc Natl Acad Sci USA 88:3564–3568PubMedCrossRefGoogle Scholar
  59. 59.
    Jeannotte L, Trifiro MA, Plante RK, Chamberland M, Drouin J 1987 Tissue-specific activity of the pro-opioomelanocortin gene promoter. Mol Cell Biol 7:4058–4064PubMedGoogle Scholar
  60. 60.
    Tremblay Y, Tretjakoff I, Peterson A, Antakly T, Zhang CX, Drouin J 1988 Pituitary-specific expression and glucocorticoid regulation of proopiomelanocortin fusion gene in transgenic mice. Proc Natl Acad Sci USA 85:8890–8894PubMedCrossRefGoogle Scholar
  61. 61.
    Liu B, Hammer GD, Rubinstein M, Mortrud M, Low MJ 1992 Identification of DNA elements cooperatively activating proopiomelanocortin gene expression in the pituitary gland of transgenic mice. Mol Cell Biol 12:3978–3990PubMedGoogle Scholar
  62. 62.
    Liu B, Mortrud M, Low MJ 1995 DNA elements with AT-rich core sequences direct pituitary cell-specific expression of the pro-opiomelanocortin gene in transgenic mice. Biochem J 312 (Pt 3):827–832PubMedGoogle Scholar
  63. 63.
    Young JI, Otero V, Cerdan MG et al 1998 Authentic cell-specific and developmentally regulated expression of pro-opiomelanocortin genomic fragments in hypothalamic and hindbrain neurons of transgenic mice. J Neurosci 18(17):6631–6640PubMedGoogle Scholar
  64. 64.
    Therrien M, Drouin J 1991 Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements. Mol Cell Biol 11:3492–3503PubMedGoogle Scholar
  65. 65.
    Kraus J, Buchfelder M, Hollt V 1993 Regulatory elements of the human proopiomelanocortin gene promoter. DNA Cell Biol 12(6):527–536PubMedCrossRefGoogle Scholar
  66. 66.
    Tsukada T, Nakai Y, Fukushima M, Usui T, Imura H, Takebe H 1994 Functional analysis of the cell-specific enhancer in the human proopiomelanocortin gene by betagalactosidase histochemical staining. DNA Cell Biol 13(7):755–762PubMedCrossRefGoogle Scholar
  67. 67.
    Jin WD, Boutillier AL, Glucksman MJ et al 1994 Characterization of a corticotropinreleasing hormone-responsive element in the rat proopiomelanocortin gene promoter and molecular cloning of its binding protein. Mol Endocrinol 8(10):1377–1388PubMedCrossRefGoogle Scholar
  68. 68.
    Drouin J, Trifiro MA, Plante RK, Nemer M, Eriksson P, Wrange O 1989 Glucocorticoid receptor binding to a specific DNA sequence is required for hormone-dependent repression of pro-opiomelanocortin gene transcription. Mol Cell Biol 9:5305–5314PubMedGoogle Scholar
  69. 69.
    Riegel AT, Remenick J, Wolford RG, Berard DS, Hager GL 1990 A novel transcriptional activator (PO-B) binds between the TATA box and cap site of the proopiomelanocortin gene. Nucleic Acids Res 18:4513–4521PubMedCrossRefGoogle Scholar
  70. 70.
    Bishop JF, Rinaudo MS, Ritter JK, Chang AC, Conant K, Gehlert DR 1990 A putative AP-2 binding site in the 5’ flanking region of the mouse POMC gene. FEBS Lett 264(1):125–129PubMedCrossRefGoogle Scholar
  71. 71.
    Boutillier AL, Sassone-Corsi P, Loeffler JP 1991 The protooncogene c-fos is induced by corticotropin-releasing factor and stimulates proopiomelanocortin gene transcription in pituitary cels. Mol Endocrinol 5:1301–1310PubMedCrossRefGoogle Scholar
  72. 72.
    Gerrero MR, McEvilly RJ, Turner E et al 1993 Brn-3.0: a POU-domain protein expressed in the sensory, immune, and endocrine systems that functions on elements distinct from known octamer motifs. Proc Natl Acad Sci USA 90:10841–10845PubMedCrossRefGoogle Scholar
  73. 73.
    Picon A, Bertagna X, de Keyzer Y 1999 Analysis of the human proopiomelanocortin gene promoter in a small cell lung carcinoma cell line reveals an unusual role for E2F transcription factors. Oncogene 18(16):2627–2633PubMedCrossRefGoogle Scholar
  74. 74.
    Therrien M, Drouin J 1993 Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene. Mol Cell Biol 13:2342–2353PubMedGoogle Scholar
  75. 75.
    Drouin J, Lamolet B, Lamonerie T, Lanctot C, Tremblay JJ 1998 The Ptx family of homeodomain transcription factors during pituitary development. Mol Cell Endocrinol 140:31–36PubMedCrossRefGoogle Scholar
  76. 76.
    Newell-Price J, King P, Clark AJ 2001 The CpG island promoter of the human proopiomelanocortin gene is methylated in nonexpressing normal tissue and tumors and represses expression. Mol Endocrinol 15(2):338–348PubMedCrossRefGoogle Scholar
  77. 77.
    Lassar AB, Davis RL, Wright WE et al 1991 Functional activity of myogenic HLH proteins requires hetero-oligomerization with El 2/E47-like proteins in vivo. Cell 66:305–315PubMedCrossRefGoogle Scholar
  78. 78.
    Ohneda K, Mirmira RG, Wang JH, Johnson JD, German MS 2000 The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol Cell Biol 20(3):900–911.PubMedCrossRefGoogle Scholar
  79. 79.
    Wilkinson DG, Bhatt S, Herrmann BG 1990 Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343(6259):657–659PubMedCrossRefGoogle Scholar
  80. 80.
    Kispert A, Herrmann BG 1993 The Brachyury gene encodes a novel DNA binding protein [published erratum appears in EMBO J Dec;12(12):4898–9]. EMBO J 12(8):3211–3220Google Scholar
  81. 81.
    Perrin MH, Vale WW 1999 Corticotropin releasing factor receptors and their ligand family. Ann N Y Acad Sci 885:312–328PubMedCrossRefGoogle Scholar
  82. 82.
    Montminy M 1997 Transcriptional regulation by cyclic AMP. Annu Rev Biochem 66:807–822PubMedCrossRefGoogle Scholar
  83. 83.
    Spaulding SW 1993 The ways in which hormones change cyclic adenosine 3’,5’- monophosphate-dependent protein kinase subunits, and how such changes affect cell behavior. Endocr Rev 14(5):632–650PubMedGoogle Scholar
  84. 84.
    Gagner J-P, Drouin J 1985 Opposite regulation of pro-opiomelanocortin gene transcription by glucocorticoids and CRH. Mol Cell Endocrinol 40:25–32PubMedCrossRefGoogle Scholar
  85. 85.
    Gagner J-P, Drouin J 1987 Tissue-specific regulation of pituitary proopiomelanocortin gene transcription by corticotropin-releasing hormone, 3’, 5’- cyclic adenosine monophosphate, and glucocorticoids. Mol Endocrinol 1:677–682PubMedCrossRefGoogle Scholar
  86. 86.
    Kuryshev YA, Childs GV, Ritchie AK 1996 Corticotropin-releasing hormone stimulates Ca2+ entry through L- and P-type Ca2+ channels in rat corticotropes. Endocrinology 137(6):2269–2277PubMedCrossRefGoogle Scholar
  87. 87.
    von Dreden G, Loeffler JP, Grimm C, Hollt V 1988 Influence of calcium ions on proopiomelanocortin mRNA levels in clonal anterior pituitary cells. Neuroendocrinol 47:32–37CrossRefGoogle Scholar
  88. 88.
    Bishop JF, Mouradian MM 1993 Characterization of a corticotropin releasing hormone responsive region in the murine proopiomelanocortin gene. Mol Cell Endocrinol 97(1–2):165–171PubMedCrossRefGoogle Scholar
  89. 89.
    Licinio J, Bongiorno PB, Gold PW, Wong ML 1995 The gene encoding for the novel transacting factor proopiomelanocortin corticotropin-releasing hormone responsive element binding protein 1 (PCRH-REB-1) is constitutively expressed in rat pituitary and in discrete brain regions containing CRH or CRH receptors: pathophysiological implications. Endocrinology 136(10):4709–4712PubMedCrossRefGoogle Scholar
  90. 90.
    Boutillier AL, Monnier D, Lorang D, Lundblad JR, Roberts JL, Loeffler JP 1995 Corticotropin-releasing hormone stimulates proopiomelanocortin transcription by cFosdependent and -independent pathways: characterization of an AP1 site in exon 1. Mol Endocrinol 9(6):745–755PubMedCrossRefGoogle Scholar
  91. 91.
    Autelitano DJ, Cohen DR 1996 CRF stimulates expression of multiple fos and jun related genes in the AtT-20 corticotroph cell. Mol Cell Endocrinol 119(1):25–35PubMedCrossRefGoogle Scholar
  92. 92.
    Philips A, Lesage S, Gingras R et al 1997 Novel dimeric Nur77 signaling mechanisms in endocrine and lymphoid cells. Mol Cell Biol 17(10):5946–5951PubMedGoogle Scholar
  93. 93.
    Murphy EP, Conneely OM 1997 Neuroendocrine regulation of the hypothalamic pituitary adrenal axis by the nurrl/nur77 subfamily of nuclear receptors. Mol Endocrinol 11(1):39–47PubMedCrossRefGoogle Scholar
  94. 94.
    Maira MH, Martens C, Philips A, Drouin J 1999 Heterodimerization between members of the Nur subfamily of orphan nuclear receptors as a novel mechanism for gene activation. Mol Cell Biol 19(11):7549–7557PubMedGoogle Scholar
  95. 95.
    Milbrandt J 1988 Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1(3):183–188PubMedCrossRefGoogle Scholar
  96. 96.
    Law SW, Conneely OM, DeMayo FJ, O’Malley BW 1992 Identification of a new brain-specific transcription factor, NURR1. Mol Endocrinol 6(12):2129–2135PubMedCrossRefGoogle Scholar
  97. 97.
    Ohkura N, Hijikuro M, Yamamoto A, Mild K 1994 Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 205(3):1959–1965PubMedCrossRefGoogle Scholar
  98. 98.
    Hazel TG, Nathans D, Lau LF 1988 A gene inducible by serum growth factors encodes a member of the steroid and thyroid hormone receptor superfamily. Proc Natl Acad Sci USA 85(22):8444–8448PubMedCrossRefGoogle Scholar
  99. 99.
    Davis IJ, Lau LF 1994 Endocrine and neurogenic regulation of the orphan nuclear receptors Nur77 and Nun-1 in the adrenal glands. Mol Cell Biol 14(5):3469–3483PubMedGoogle Scholar
  100. 100.
    Cheng LEC, Chan FKM, Cado D, Winoto A 1997 Functional redundancy of the Nur77 and Nor-1 orphan steroid receptors in T-cell apoptosis. EMBO J 16(8):1865–1875.PubMedCrossRefGoogle Scholar
  101. 101.
    Wilson TE, Fahrner TJ, Johnston M, Milbrandt J 1991 Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252(5010):1296–1300PubMedCrossRefGoogle Scholar
  102. 102.
    Woronicz JD, Lina A, Calnan BJ, Szychowski S, Cheng L, Winoto A 1995 Regulation of the Nur77 orphan steroid receptor in activation-induced apoptosis. Mol Cell Biol 15(11):6364–6376PubMedGoogle Scholar
  103. 103.
    Xiao Q, Castillo SO, Nikodem VM 1996 Distribution of messenger RNAs for the orphan nuclear receptors Nurrl and Nur77 (NGFI-B) in adult rat brain using in situ hybridization. Neuroscience 75(1):221–230PubMedCrossRefGoogle Scholar
  104. 104.
    Crawford PA, Sadovsky Y, Woodson K, Lee SL, Milbrandt J 1995 Adrenocortical function and regulation of the steroid 21-hydroxylase gene in NGFI-B-deficient mice. Mol Cell Biol 15(8):4331–16PubMedGoogle Scholar
  105. 105.
    Conneely OM, Satyamoorthy K, Saucedo-Cardenas O, De Mayo F 1997 Neurodevelopmental role of the orphan nuclear receptor, Nurrl. 79th Annual Meeting, The Endocrine SocietyGoogle Scholar
  106. 106.
    Akita S, Webster J, Ren SG et al 1995 Human and murine pituitary expression of leukemia inhibitory factor. Novel intrapituitary regulation of adrenocorticotropin hormone synthesis and secretion. J Clin Invest 95(3):1288–1298PubMedCrossRefGoogle Scholar
  107. 107.
    Yano H, Readhead C, Nakashima M, Ren SG, Melmed S 1998 Pituitary-directed leukemia inhibitory factor transgene causes Cushing’s syndrome: neuro-immuneendocrine modulation of pituitary development. Mol Endocrinol 12(11):1708–1720PubMedCrossRefGoogle Scholar
  108. 108.
    Stefana B, Ray DW, Melmed S 1996 Leukemia inhibitory factor induces differentiation of pituitary corticotroph function: an immuno-neuroendocrine phenotypic switch. Proc Natl Acad Sci U S A 93(22):12502–12506PubMedCrossRefGoogle Scholar
  109. 109.
    Chesnokova V, Auernhammer CJ, Melmed S 1998 Murine leukemia inhibitory factor gene disruption attenuates the hypothalamo-pituitary-adrenal axis stress response. Endocrinology 139 (5): 2209–2216PubMedCrossRefGoogle Scholar
  110. 110.
    Ray DW, Ren SG, Melmed S 1996 Leukemia inhibitory factor (LIF) stimulates proopiomelanocortin (POMC) expression in a corticotroph cell line. Role of STAT pathway. J Clin Invest 97(8):1852–1859.PubMedCrossRefGoogle Scholar
  111. 111.
    Bousquet C, Ray DW, Melmed S 1997 A common pro-opiomelanocortin-binding element mediates leukemia inhibitory factor and corticotropin-releasing hormone transcriptional synergy. J Biol Chem 272(16):10551–10557PubMedCrossRefGoogle Scholar
  112. 112.
    Bousquet C, Zatelli MC, Melmed S 2000 Direct regulation of pituitary proopiomelanocortin by STAT3 provides a novel mechanism for immunoneuroendocrine interfacing. J Clin Invest 106(11):1417–1425PubMedCrossRefGoogle Scholar
  113. 113.
    Mangelsdorf DJ, Thummel C, Beato M et al 1995 The nuclear receptor superfamily: the second decade. Cell 83(6):835–839.PubMedCrossRefGoogle Scholar
  114. 114.
    Payvar FP, de Franco D, Firestone GL et al 1983 Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell 35:381–392PubMedCrossRefGoogle Scholar
  115. 115.
    Nakai Y, Usui T, Tsukada T et al 1991 Molecular mechanisms of glucocorticoid inhibition of human proopiomelanocortin gene transcription. J Steroid Biochem Mol Biol 40:301–306PubMedCrossRefGoogle Scholar
  116. 116.
    Hammer GD, Fairchild-Huntress V, Low MJ 1990 Pituitary-specific and hormonally regulated gene expression directed by the rat proopiomelanocortin promoter in transgenic mice. Mol Endocrinol 4:1689–1697PubMedCrossRefGoogle Scholar
  117. 117.
    Drouin J, Sun YL, Chamberland M et al 1993 Novel glucocorticoid receptor complex with DNA element of the hormone-repressed POMC gene. EMBO J 12:145–156.PubMedGoogle Scholar
  118. 118.
    Jonat C, Rahmsdorf HJ, Park K-K et al 1990 Antitumor promotion and antiinflammation: down-modulation of AP-1 (fos/jun) activity by glucocorticoid hormone. Cell 62:1189–1204PubMedCrossRefGoogle Scholar
  119. 119.
    Yang-Yen HF, Chambard JC, Sun YL et al 1990 Transcriptional interference between c-jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1215PubMedCrossRefGoogle Scholar
  120. 120.
    Beato M, Herrlich P, Schutz G 1995 Steroid hormone receptors: many actors in search of a plot. Cell 83(6):851–857PubMedCrossRefGoogle Scholar
  121. 121.
    Reik A, Stewart AF, Schutz G 1994 Cross-talk modulation of signal transduction pathways: two mechanisms are involved in the control of tyrosine aminotransferase gene expression by phorbol esters. Mol Endocrinol 8(4):490–497PubMedCrossRefGoogle Scholar
  122. 122.
    Ktinig H, Ponta H, Rahmsdorf HJ, Herrlich P 1992 Interference between pathway-specific transcription factors: glucocorticoids antagonize phorbol ester-induced AP-1 activity without altering AP-1 site occupation in vivo. EMBO J 11:2241–2246Google Scholar
  123. 123.
    Riegel AT, Lu Y, Remenick J, Wolford RG, Berard DS, Hager GL 1991 Proopiomelanocortin gene promoter elements required for constitutive and glucocorticoid-repressed transcription. Mol Endocrinol 5:1973–1982PubMedCrossRefGoogle Scholar
  124. 124.
    McKay LI, Cidlowski JA 1998 Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 12(1):45–56PubMedCrossRefGoogle Scholar
  125. 125.
    Philips A, Maira MH, Mullick A et al 1997 Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol Cell Biol 17(10):5952–5959PubMedGoogle Scholar
  126. 126.
    Okabe T, Takayanagi R, Adachi M, Imasaki K, Nawata H 1998 Nur77, a member of the steroid receptor superfamily, antagonizes negative feedback of ACTH synthesis and secretion by glucocorticoid in pituitary corticotrope cells. J Endocrinol 156(1):169–175PubMedCrossRefGoogle Scholar
  127. 127.
    Cole TJ, Blendy JA, Monaghan AP et al 1995 Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev 9(13):1608–1621PubMedCrossRefGoogle Scholar
  128. 128.
    Heck S, Kullmann M, Gast A et al 1994 A distinct modulating domain in glucocorticoid receptor monomers in the repression of activity of the transcription factor AP-I. EMBO J 13(17):4087–4095PubMedGoogle Scholar
  129. 129.
    Reichardt HM, Kaestner KH, Tuckermann J et al 1998 DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93(4):531–541PubMedCrossRefGoogle Scholar
  130. 130.
    Muglia L, Jacobson L, Dikkes P, Majzoub JA 1995 Corticotropin-releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 373(6513):427–432PubMedCrossRefGoogle Scholar
  131. 131.
    Muglia LJ, Bethin KE, Jacobson L, Vogt SK, Majzoub JA 2000 Pituitary-adrenal axis regulation in CRH-deficient mice. Endocr Res 26(4):1057–1066PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Maria Nudi
    • 1
  • Éric Batsché
    • 1
  • Jacques Drouin
    • 1
  1. 1.Institut de recherches cliniques de Montréal (IRCM)Université de MontréalMontreal

Personalised recommendations