Mouse Echocardiography

  • Attila Kovacs
  • Michael Courtois
Part of the Basic Science for the Cardiologist book series (BASC, volume 16)


Widespread use of increasingly sophisticated gene-targeting technologies has created a growing interest in the physiological genomics of mice. The study of the role of specific genes in organ function has motivated investigators in the field of cardiovascular research to adapt techniques first used in humans and large animals to evaluate cardiac phenotypes in mice. Since its first application in this field in the late 1990s, echocardiography has become the most widely used noninvasive technique for studying cardiac structure and function in genetically manipulated mice. Although not specifically developed for this purpose, technical improvements in ultrasound imaging systems have allowed investigators to extend studies into more and more diverse areas of cardiac physiology. These technical improvements, coupled with increasingly refined time-and dose-dependent organ-specific genetic manipulations have dramatically increased our understanding of both the advantages and limitations inherent in using mouse models to study human cardiac disease.


Left Ventricle Pressure Overload Physiol Heart Circ Transverse Aortic Constriction Left Ventricle Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhter SA, Luttrell LM, Rockman HA, et al. Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science. 1998;280:574–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Badorff C, Ruetten H, Mueller S, et al. Fas receptor signaling inhibits glycogen synthase kinase 3 beta and induces cardiac hypertrophy following pressure overload. J Clin Invest. 2002;109:373–81.PubMedGoogle Scholar
  3. 3.
    Chen B, Bronson RT, Klaman LD, et al. Mice mutant for Egfr and Shp2 have defective cardiac semilunar valvulogenesis. Nat Genet. 2000;24:296–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Chiu HC, Kovacs A, Ford DA, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest. 2001;107:813–22.PubMedCrossRefGoogle Scholar
  5. 5.
    Chiu HC, Kovacs A, Courtois MR, et al. Perturbation of cardiomyocyte lipid homeostasis causes diastolic dysfunction and electrophysiologic abnormalities. (Abstract). Circulation. 2002;106:II307Google Scholar
  6. 6.
    Coatney RW. Ultrasound Imaging: Principles and Applications in Rodent Research. ILAR J. 2001;42:233–247.PubMedGoogle Scholar
  7. 7.
    Collins KA, Korcarz CE, Shroff SG, et al. Accuracy of echocardiographic estimates of left ventricular mass in mice. Am J Physiol Heart Circ Physiol. 2001;280:H1954–62.PubMedGoogle Scholar
  8. 8.
    Condorelli G, Drusco A, Stassi G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A. 2002;99:12333–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Courtois M, Ludbrook PA, Kovacs SJ. Unsolved problems in diastole. Cardiol Clin. 2000;18:653–67.PubMedCrossRefGoogle Scholar
  10. 10.
    Ding B, Price RL, Goldsmith EC, et al. Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation. 2000;101:2854–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Esposito G, Prasad SV, Rapacciuolo A, et al. Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation. 2001;103:1453–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Fard A, Wang CY, Takuma S, et al. Noninvasive assessment and necropsy validation of changes in left ventricular mass in ascending aortic banded mice. J Am Soc Echocardiogr. 2000;13:582–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Feldman MD, Erikson JM, Mao Y, et al. Validation of a mouse conductance system to determine LV volume: comparison to echocardiography and crystals. Am J Physiol (Heart Circ) Physiol. 2000;279:H1698–707.Google Scholar
  14. 14.
    Fentzke RC, Korcarz CE, Shroff SG, et al. Evaluation of ventricular and arterial hemodynamics in anesthetized closed-chest mice. J Am Soc Echocardiogr. 1997;10:91525.Google Scholar
  15. 15.
    Foster FS, Zhang MY, Zhou YQ, et al. A new ultrasound instrument for in vivo microimaging of mice. Ultrasound Med Biol. 2002;28:1165–72.PubMedCrossRefGoogle Scholar
  16. 16.
    Gao XM, Dart AM, Dewar E, et al. Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res. 2000;45:330–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Gardin JM, Siri FM, Kitsis RN, et al. Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ Res. 1995;76:907–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Hart CY, Burnett JC Jr, Redfield MM. Effects of avertin versus xylazine-ketamine anesthesia on cardiac function in normal mice. Am J Physiol (Heart Circ Physiol.) 2001;281:H1938–45.Google Scholar
  19. 19.
    Hill JA, Karimi M, Kutschke W, et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation. 2000;101:2863–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Hoit BD, Khoury SF, Kranias EG, et al. In vivo echocardiographic detection of enhanced left ventricular function in gene-targeted mice with phospholamban deficiency. Circ Res. 1995;77:632–637.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoit BD, Khan ZU, Pawloski-Dahm CM, et al. In vivo determination of left ventricular wall stress-shortening relationship in normal mice. Am J Physiol. 1997;272:H1047–52.PubMedGoogle Scholar
  22. 22.
    Hollenberg SM, Dumasius A, Easington C, et al. Characterization of a hyperdynamic murine model of resuscitated sepsis using echocardiography. Am J Respir Crit Care Med. 2001;164:891–5.PubMedGoogle Scholar
  23. 23.
    Kanno S, Lerner DL, Schuessler RB, Betsuyaku T, Yamada KA, Saffitz JE, Kovacs A. Echocardiographic evaluation of ventricular remodeling in a mouse model of myocardial infarction. J Am Soc Echocardiogr. 2002;15:601–9.PubMedCrossRefGoogle Scholar
  24. 24.
    Kiatchoosakun S, Restivo J, Kirkpatrick D, et al. Assessment of left ventricular mass in mice: comparison between two-dimensional and m-mode echocardiography. Echocardiography. 2002;19:199–205.PubMedCrossRefGoogle Scholar
  25. 25.
    Kiriazis H, Sato Y, Kadambi VJ, et al. Hypertrophy and functional alterations in hyperdynamic phospholamban-knockout mouse hearts under chronic aortic stenosis. Cardiovasc Res. 2002;53:372–81.PubMedCrossRefGoogle Scholar
  26. 26.
    Kovacs A, Yee R, D¨¢vila-Rom¨¢n VG, et al. Comparison of M-mode and 2-D based measurements of LV geometry in mice. (Abstract) J Am Soc Echocardiogr. 1998;11:538Google Scholar
  27. 27.
    Kovacs A, Courtois MR, Barzilai B, et al. Reversal of hypocalcemia and decreased afterload in sepsis. Effect on myocardial systolic and diastolic function. Am J Respir Crit Care Med. 1998;158:1990–8.PubMedGoogle Scholar
  28. 28.
    Kovacs A, Courtois MR, Weinheimer CJ, et al. Doppler tissue imaging of segmental wall motion in mice. (Abstract) Circulation. 1999;100:I-572.Google Scholar
  29. 29.
    Leone TC, Schaffer JE, Chiu HC, et al. A mouse model with increased myocardial fatty acid import combined with reduced oxidative capacity: evidence for “lipotoxicity” in pathologic cardiac remodeling. Circulation. 2002;106:II-307.Google Scholar
  30. 30.
    Liao P, Georgakopoulos D, Kovacs A, et al. The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy. Proc Natl Acad Sci U S A. 2001;98:12283–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Liao Y, Ishikura F, Beppu S, et al. Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. Am J Physiol Heart Circ Physiol. 2002;282:H1703–8.PubMedGoogle Scholar
  32. 32.
    Liggett SB, Tepe NM, Lorenz JN, et al. Early and delayed consequences of beta(2)adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation. 2000;101:1707–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Lipskaia L, Defer N, Esposito G, et al. Enhanced cardiac function in transgenic mice expressing a Ca(2+)-stimulated adenylyl cyclase. Circ Res. 2000;86:795–801.PubMedCrossRefGoogle Scholar
  34. 34.
    Manning WJ, Wei JY, Katz SE, et al. In vivo assessment of LV mass in mice using high-frequency cardiac ultrasound: necropsy validation. Am J Physiol. 1994;266:H1672–5.PubMedGoogle Scholar
  35. 35.
    McConnell BK, Jones KA, Fatkin D, et al. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. 1999;104:1235–44.Google Scholar
  36. 36.
    Michael LH, Ballantyne CM, Zachariah JP, et al. Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Physiol. 1999;277:H660–8.PubMedGoogle Scholar
  37. 37.
    Mor-Avi V, Korcarz C, Fentzke RC, et al. Quantitative evaluation of left ventricular function in a transgenic mouse model of dilated cardiomyopathy with 2-D contrast echocardiography. J Am Soc Echocardiogr. 1999:12:209–214.PubMedCrossRefGoogle Scholar
  38. 38.
    Nakamura A, Rokosh DG, Paccanaro M, et al. LV systolic performance improves with development of hypertrophy after transverse aortic constriction in mice. Am J Physiol Heart Circ Physiol. 2001;281:H1104–12.PubMedGoogle Scholar
  39. 39.
    Nakamura Y, Yoshiyama M, Omura T, et al. Transmitral inflow pattern assessed by Doppler echocardiography in angiotensin II type IA receptor knockout mice with myocardial infarction. Circ J. 2002;66:192–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Nemoto S, DeFreitas G, Mann DL, et al. Effects of changes in left ventricular contractility on indexes of contractility in mice. Am J Physiol Heart Circ Physiol. 2002;283:H2504–10.PubMedGoogle Scholar
  41. 41.
    Nicholson SC, Hahn RT, Grobmyer SR, et al. Echocardiographic and survival studies in mice undergoing endotoxic shock: effects of genetic ablation of inducible nitric oxide synthase and pharmacologic antagonism of platelet-activating factor. J Surg Res. 1999;86:198–205.PubMedCrossRefGoogle Scholar
  42. 42.
    Patten RD, Aronovitz MJ, Deras-Mejia L, et al. Ventricular remodeling in a mouse model of myocardial infarction. Am J Physiol. 1998;274:H1812–20.PubMedGoogle Scholar
  43. 43.
    Rogers JH, Tsirka A, Kovacs A, et al. RGS4 reduces contractile dysfunction and hypertrophie gene induction in Galpha q overexpressing mice. J Mol Cell Cardiol. 2001;33:209–18.PubMedCrossRefGoogle Scholar
  44. 44.
    Roten L, Nemoto S, Simsic J, et al. Effects of gene deletion of the tissue inhibitor of the matrix metalloproteinase-type 1 (TIMP-1) on left ventricular geometry and function in mice. J Mol Cell Cardiol. 2000;32:109–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Scherrer-Crosbie M, Steudel W, Hunziker PR, Foster et al. Determination of right ventricular structure and function in normoxic and hypoxic mice: a transesophageal echocardiographic study. Circulation. 1998;98:1015–21.PubMedCrossRefGoogle Scholar
  46. 46.
    Scherrer-Crosbie M, Steudel W, Ullrich R, et al. Echocardiographic determination of risk area size in a murine model of myocardial ischemia. Am J Physiol. 1999;277:H986–92.PubMedGoogle Scholar
  47. 47.
    Scherrer-Crosbie M, Steudel W, Hunziker PR, et al. Three-dimensional echocardiographic assessment of left ventricular wall motion abnormalities in mouse myocardial infarction. J Am Soc Echocardiogr. 1999;12:834–40.PubMedCrossRefGoogle Scholar
  48. 48.
    Schmidt AG, Kadambi VJ, Ball N, et al. Cardiac-specific overexpression of calsequestrin results in left ventricular hypertrophy, depressed force-frequency relation and pulsus alternans in vivo. J Mol Cell Cardiol. 2000;32:1735–44.PubMedCrossRefGoogle Scholar
  49. 49.
    Schmidt AG, Gerst M, Zhai J, et al. Evaluation of left ventricular diastolic function from spectral and color M-mode Doppler in genetically altered mice. J Am Soc Echocardiogr. 2002;15:1065–73.PubMedCrossRefGoogle Scholar
  50. 50.
    Schultz JE, Witt SA, Nieman ML, et al. Fibroblast growth factor-2 mediates pressure-induced hypertrophic response. J Clin Invest. 1999;104:709–19.PubMedCrossRefGoogle Scholar
  51. 51.
    Semeniuk LM, Kryski AJ, Severson DL. Echocardiographic assessment of cardiac function in diabetic db/db and transgenic db/db-hGLUT4 mice. Am J Physiol Heart Circ Physiol. 2002;283:H976–82.PubMedGoogle Scholar
  52. 52.
    Suehiro K, Takuma S, Cardinale C, et al. Assessment of segmental wall motion abnormalities using contrast two-dimensional echocardiography in awake mice. Am J Physiol Heart Circ Physiol. 2001;280:H1729–35.PubMedGoogle Scholar
  53. 53.
    Taffet GE, Hartley CJ, Wen X, et al. Noninvasive indexes of cardiac systolic and diastolic function in hyperthyroid and senescent mouse. Am J Physiol. 1996;270:H2204–9.PubMedGoogle Scholar
  54. 54.
    Tanaka N, Dalton N, Mao L, et al. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation. 1996;94:1109–17.PubMedCrossRefGoogle Scholar
  55. 55.
    Wang X, Osinska H, Dorn GW, et al. Mouse model of desmin-related cardiomyopathy. Circulation. 2001;103:2402–7.PubMedCrossRefGoogle Scholar
  56. 56.
    Wayman, Arthur E. Principles and Practise of Echocardiography. Lea & Febiger Publishing, 1994Google Scholar
  57. 57.
    Wettschureck N, Rutten H, Zywietz A, et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galphal 1 in cardiomyocytes. Nat Med. 2001;7:1236–40.PubMedCrossRefGoogle Scholar
  58. 58.
    Williams RV, Lorenz JN, Witt SA, et al. End-systolic stress-velocity and pressure-dimension relationships by transthoracic echocardiography in mice. Am J Physiol. 1998;274:H1828–35.PubMedGoogle Scholar
  59. 59.
    Youn HJ, Rokosh G, Lester SJ, et al. Two-dimensional echocardiography with a 15-MHz transducer is a promising alternative for in vivo measurement of left ventricular mass in mice. J Am Soc Echocardiogr. 1999;12:70–75.PubMedCrossRefGoogle Scholar
  60. 60.
    Zhou YQ, Foster FS, Qu DW, et al. Applications for multifrequency ultrasound biomicroscopy in mice from implantation to adulthood. Physiol Genomics. 2002;10:11326.Google Scholar
  61. 61.
    Zuurbier CJ, Emons VM, Ince C. Hemodynamics of anesthetized ventilated mouse models: aspects of anesthetics, fluid support, and strain. Am J Physiol Heart Circ Physiol. 2002;282:H2099–105.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Attila Kovacs
    • 1
  • Michael Courtois
    • 1
  1. 1.Center for Cardiovascular ResearchWashington University School of MedicineMissouriUSA

Personalised recommendations