Skip to main content

Mouse Models for Arterial Thrombosis: Does Clotting Make a Difference in Human Cardiovascular Disease?

  • Chapter
The Physiological Genomics of the Critically Ill Mouse

Part of the book series: Basic Science for the Cardiologist ((BASC,volume 16))

  • 150 Accesses

Abstract

Cardiovascular disease is the leading cause of death worldwide and arterial thrombosis, usually superimposed on atherosclerosis, is the immediate cause of acute myocardial infarction (AMI) and stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rissanen, A.M. and E.A. Nikkila, Coronary artery disease and its risk factors in families of young men with angina pectoris and in controls. Br. Heart J., 1977. 39(8): 875–83.

    Article  PubMed  CAS  Google Scholar 

  2. Williams, M.S. and P.F. Bray, Genetics of arterial prothrombotic risk states. Exp Biol Med (Maywood), 2001. 226(5): 409–19.

    CAS  Google Scholar 

  3. Boekholdt, S.M., et al., Genetic variation in coagulation and fibrinolytic proteins and their relation with acute myocardial infarction: a systematic review. Circulation, 2001. 104(25): 3063–8.

    Article  PubMed  CAS  Google Scholar 

  4. Yamada, Y., et al., Prediction of the risk of myocardial infarction from polymorphisms in candidate genes. N Engl J Med, 2002. 347(24): 1916–23.

    Article  PubMed  CAS  Google Scholar 

  5. Longstreth, W.T., Jr., et al., Risk of stroke in young women and two prothrombotic mutations: factor V Leiden and prothrombin gene variant (G20210A). Stroke, 1998. 29(3): 577–80.

    Article  PubMed  Google Scholar 

  6. Libby, P., Inflammation in atherosclerosis. Nature, 2002. 420(6917): p. 868–74.

    Article  PubMed  CAS  Google Scholar 

  7. Almus-Jacobs, F., Z.M. Ruggeri, and B. Savage, Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell, 1998. 94(5): 657–66.

    Article  PubMed  Google Scholar 

  8. Roy, S.N., G. Mukhopadhyay, and C.M. Redman, Regulation of fibrinogen assembly. Transfection of Hep G2 cells with B beta cDNA specifically enhances synthesis of the three component chains of fibrinogen. J Biol Chem, 1990. 265(11): 6389–93.

    PubMed  CAS  Google Scholar 

  9. Margaglione, M., et al., Fibrinogen plasma levels in an apparently healthy general population--relation to environmental and genetic determinants. Thromb Haemost, 1998. 80(5): 805–10.

    PubMed  CAS  Google Scholar 

  10. Scarabin, P.Y., et al., Associations of fibrinogen, factor VII and PAI-1 with baseline findings among 10,500 male participants in a prospective study of myocardial infarction--the PRIME Study. Prospective Epidemiological Study of Myocardial Infarction. Thromb Haemost, 1998. 80(5): 749–56.

    PubMed  CAS  Google Scholar 

  11. Thompson, S.G., et al., Hemostatic factors and the risk of myocardial infarction or sudden death in patients with angina pectoris. European Concerted Action on Thrombosis and Disabilities Angina Pectoris Study Group. N Engl J Med, 1995. 332(10): 635–41.

    Article  PubMed  CAS  Google Scholar 

  12. Rezaee, F., et al., Increased hepatic fibrinogen Bbeta-gene transcription is not enough to increase plasma fibrinogen levels. A transgenic mouse study. Thromb Haemost, 2001. 85(6): 1025–30.

    PubMed  CAS  Google Scholar 

  13. Ni, H., et al., Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest, 2000. 106(3): 385–92.

    Article  PubMed  CAS  Google Scholar 

  14. Tschopp, T.B., H.J. Weiss, and H.R. Baumgartner, Decreased adhesion of platelets to subendothelium in von Willebrand’s disease. J Lab Clin Med, 1974. 83(2): 296–300.

    PubMed  CAS  Google Scholar 

  15. Keightley, A.M., et al., Variation at the von Willebrand factor (vWF) gene locus is associated with plasma vWF:Ag levels: identification of three novel single nucleotide polymorphisms in the vWF gene promoter. Blood, 1999. 93(12): 4277–83.

    PubMed  CAS  Google Scholar 

  16. Sramek, A., et al., Decreased coagulability has no clinically relevant effect on atherogenesis: observations in individuals with a hereditary bleeding tendency. Circulation, 2001. 104(7): 762–7.

    Article  PubMed  CAS  Google Scholar 

  17. Ruggeri, Z.M., Mechanisms initiating platelet thrombus formation. Thromb Haemost, 1997. 78(1): 611–6.

    PubMed  CAS  Google Scholar 

  18. Bray, P.F., Inherited diseases of platelet glycoproteins: considerations for rapid molecular characterization. Thromb Haemost, 1994. 72(4): 492–502.

    PubMed  CAS  Google Scholar 

  19. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. The EPIC Investigation. N Engl J Med, 1994. 330(14): 956–61.

    Article  Google Scholar 

  20. Platelet glycoprotein IIb/IIIa receptor blockade and low-dose heparin during percutaneous coronary revascularization. The EPILOG Investigators. N Engl J Med, 1997. 336(24): 1689–96.

    Article  Google Scholar 

  21. Amoroso, G., et al., Pathophysiology of vascular endothelium and circulating platelets: implications for coronary revascularisation and treatment. Int J Cardiol, 2001. 79(2–3): 2–3.

    Article  PubMed  CAS  Google Scholar 

  22. Newman, P.J., Platelet alloantigens: cardiovascular as well as immunological risk factors? Lancet, 1997. 349(9049): 370–1.

    Article  PubMed  CAS  Google Scholar 

  23. Smyth, S.S., et al., Variable protection of beta 3-integrin--deficient mice from thrombosis initiated by different mechanisms. Blood, 2001. 98(4): 1055–62.

    Article  PubMed  CAS  Google Scholar 

  24. Toschi, V., et al., Tissue factor modulates the thrombogenicity of human atherosclerotic plaques. Circulation, 1997. 95(3): 594–9.

    Article  PubMed  CAS  Google Scholar 

  25. Badimon, J.J., et al., Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation 1999. 99(14): 1780–7.

    Article  PubMed  CAS  Google Scholar 

  26. Bajaj, M.S., et al., Structure and biology of tissue factor pathway inhibitor. Thromb Haemost, 2001. 86(4): 959–72.

    PubMed  CAS  Google Scholar 

  27. Abumiya, T., et al., Decreased plasma tissue factor pathway inhibitor activity in ischemic stroke patients. Thromb Haemost, 1995. 74(4): 1050–4.

    PubMed  CAS  Google Scholar 

  28. Saigo, M., et al., Imbalance of plasminogen activator inhibitor-I/ tissue plasminogen activator and tissue factor/tissue factor pathway inhibitor in young Japanese men with myocardial infarction. Thromb Haemost, 2001. 86(5): 1197–203.

    PubMed  CAS  Google Scholar 

  29. Kato, H., Regulation of functions of vascular wall cells by tissue factor pathway inhibitor: basic and clinical aspects. Arterioscler Thromb Vasc Biol, 2002. 22(4):. 539–48.

    Article  PubMed  CAS  Google Scholar 

  30. Nishida, T., et al., Adenovirus-mediated local expression of human tissue factor pathway inhibitor eliminates shear stress-induced recurrent thrombosis in the injured carotid artery of the rabbit. Circ Res 1999. 84(12): 1446–52.

    Article  PubMed  CAS  Google Scholar 

  31. Huang, Z.F., et al., Tissue factor pathway inhibitor gene disruption produces intrauterine lethality in mice. Blood, 1997. 90(3): 944–51.

    PubMed  CAS  Google Scholar 

  32. Kunz, G., et al., Identification and characterization of a thrombomodulin gene mutation coding for an elongated protein with reduced expression in a kindred with myocardial infarction. Blood, 2000. 95(2): 569–76.

    PubMed  CAS  Google Scholar 

  33. Dorffler-Melly, J., et al., Functional Thrombomodulin deficiency causes enhanced thrombus growth in a murine model of carotid artery thrombosis, in Experimental, clinical and meta-analytical studies of antithrombotic therapies in venous and arterial thrombosis, 2001: 149–58, University of Amsterdam: Amsterdam.

    Google Scholar 

  34. Weiler, H., et al., Characterization of a mouse model for thrombomodulin deficiency. Arterioscler Thromb Vasc Biol, 2001. 21(9): 1531–7.

    Article  PubMed  CAS  Google Scholar 

  35. Strater, R., et al., Prospective assessment of risk factors for recurrent stroke during childhood--a 5-year follow-up study. Lancet 2002. 360(9345): 1540–5.

    Article  PubMed  Google Scholar 

  36. Memarzadeh, S., et al., Urokinase plasminogen activator receptor: Prognostic biomarker for endometrial cancer. Proc Natl Acad Sci U S A, 2002. 99(16): 10647–52.

    Article  PubMed  Google Scholar 

  37. Fujii, S. and B.E. Sobel, Induction of plasminogen activator inhibitor by products released from platelets. Circulation 1990. 82(4): 1485–93.

    Article  PubMed  CAS  Google Scholar 

  38. Hamsten, A., et al., Plasminogen activator inhibitor in plasma: risk factor for recurrent myocardial infarction. Lancet 1987. 2(8549): 3–9.

    Article  PubMed  CAS  Google Scholar 

  39. Senno, S.L. and L. Pechet, Clinical implications of elevated PAI-1 revisited: multiple arterial thrombosis in a patient with essential thrombocythemia and elevated plasminogen activator inhibitor-1 (PAI-1) levels: a case report and review of the literature. J Thromb Thrombolysis, 1999. 8(2): 105–12.

    Article  PubMed  CAS  Google Scholar 

  40. Farrehi, P.M., et al., Regulation of arterial thrombolysis by plasminogen activator inhibitor-1 in mice. Circulation, 1998. 97(10): 1002–8.

    Article  PubMed  CAS  Google Scholar 

  41. Fay, W.P., et al., Platelets inhibit fibrinolysis in vitro by both plasminogen activator inhibitor-I-dependent and -independent mechanisms. Blood, 1994. 83(2): 351–6.

    PubMed  CAS  Google Scholar 

  42. Zhu, Y., P. Carmeliet, and W.P. Fay, Plasminogen activator inhibitor-1 is a major determinant of arterial thrombolysis resistance. Circulation, 1999. 99(23): 3050–5.

    Article  PubMed  CAS  Google Scholar 

  43. Asch, E. and E. Podack, Vitronectin binds to activated human platelets and plays a role in Platele aggregation. J Clin Invest, 1990. 85(5): 1372–8.

    Article  PubMed  CAS  Google Scholar 

  44. Mohri, H. and T. Ohkubo, How vitronectin binds to activated glycoprotein IIb-IIIa complex and its function in platelet aggregation. Am J Clin Pathol, 1991. 96(5): 605–9.

    PubMed  CAS  Google Scholar 

  45. Konstantinides, S., et al., Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation, 2001. 103(4): 576–83.

    Article  PubMed  CAS  Google Scholar 

  46. Eitzman, D.T., et al., Plasminogen activator inhibitor-1 and vitronectin promote vascular thrombosis in mice. Blood, 2000. 95(2): 577–80.

    PubMed  CAS  Google Scholar 

  47. Konstantinides, S., K. Schafer, and D.J. Loskutoff, Do PAI-1 and vitronectin promote or inhibit neointima formation? The exact role of the fibrinolytic system in vascular remodeling remains uncertain. Arterioscler Thromb Vasc Biol, 2002. 22(12): 1943–5.

    Article  PubMed  CAS  Google Scholar 

  48. Peng, L., et al., Endogenous vitronectin and plasminogen activator inhibitor-1 promote neointima formation in murine carotid arteries. Arterioscler Thromb Vasc Biol, 2002. 22(6): 934–9.

    Article  PubMed  CAS  Google Scholar 

  49. de Waard, V., et al., Plasminogen activator inhibitor 1 and vitronectin protect against stenosis in a murine carotid artery ligation model. Arterioscler Thromb Vasc Biol, 2002. 22(12): p. 1978–83.

    Article  PubMed  Google Scholar 

  50. Kenchaiah, S., et al., Obesity and the risk of heart failure. N Engl J Med, 2002. 347(5): 305–13.

    Article  PubMed  Google Scholar 

  51. Laakso, M., Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes, 1999. 48(5): 937–42.

    Article  PubMed  CAS  Google Scholar 

  52. Fuster, V., et al., The pathogenesis of coronary artery disease and the acute coronary syndromes (2). N Engl J Med, 1992. 326(5): 310–8.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang, Y., et al., Positional cloning of the mouse obese gene and its human homologue. Nature, 1994. 372(6505): 425–32.

    Article  PubMed  CAS  Google Scholar 

  54. Nakata, M., et al., Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes, 1999. 48(2): 426–9.

    Article  PubMed  CAS  Google Scholar 

  55. Maruyama, I., M. Nakata, and K. Yamaji, Effect of leptin in platelet and endothelial cells. Obesity and arterial thrombosis. Ann N Y Acad Sci, 2000. 902: 315–9.

    Article  PubMed  CAS  Google Scholar 

  56. Strater, R, et al. Prospective assessment of risk factors for recurrent stroke during childhood. Lancet 2002 360: 1540–5.

    Article  PubMed  Google Scholar 

  57. Celi A, Merrill-Skoloff G, Gross P, et al. Thrombus formation: direct real-time observation and digital analysis of thrombus assembly in a living mouse by confocal and widefield intravital microscopy. J Thromb Hemost 2003, 1: 60–8

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, H., ten Cate, H. (2004). Mouse Models for Arterial Thrombosis: Does Clotting Make a Difference in Human Cardiovascular Disease?. In: Ince, C. (eds) The Physiological Genomics of the Critically Ill Mouse. Basic Science for the Cardiologist, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0483-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0483-2_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5099-6

  • Online ISBN: 978-1-4615-0483-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics