Structural and Functional Adaptations of the Heart After Coronary Artery Ligation in the Mouse

  • Ben Janssen
  • Tijl De Celle
  • Jos Paquay
  • Jos Smits
  • Matthijs Blankesteijn
Part of the Basic Science for the Cardiologist book series (BASC, volume 16)


In Western societies heart failure is becoming a pandemic disease for which the current treatment is still symptomatic rather than curative36. Developing an effective therapy for heart failure is a challenging assignment for many research groups. Mouse models are increasingly used in this research quest, because modification of the genome is relatively easier than in any other mammal. However, due to the small size of the mouse, many techniques had to be scaled down and refined. In the past 5 years, this process has been largely concluded. Various tools, including non-invasive echocardiography4,26,28,31,34,38,39,49and magnetic resonance imaging37,45are available now to examine in mouse models the molecular mechanisms underlying heart failure or to test the efficacy of novel interventions.


Heart Failure Myocardial Infarction Heart Rate Variability Infarct Size Left Anterior Descend 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aartsen, W.M., et al., The role of locally expressed angiotensin converting enzyme in cardiac remodeling after myocardial infarction in mice. Cardiovasc Res, 2002. 56(2): 20513.CrossRefGoogle Scholar
  2. 2.
    Antos, C.L., et al., Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A, 2002. 99(2): 907–12.PubMedCrossRefGoogle Scholar
  3. 3.
    Barandon, L., et al., FrzA overexpression in transgenic mouse reduces infarct size and modifies infarct healing. Circulation, 2002. 106(19): 11–310 (abstract).Google Scholar
  4. 4.
    Bayat, H., et al., Progressive heart failure after myocardial infarction in mice. Basic Res Cardiol, 2002. 97(3): 206–13.PubMedCrossRefGoogle Scholar
  5. 5.
    Blankesteijn, W.M., et al., Dynamics of cardiac wound healing following myocardial infarction: observations in genetically altered mice. Acta Physiol Scand, 2001. 173(1): 75–82.PubMedCrossRefGoogle Scholar
  6. 6.
    Blankesteijn, W.M., et al., A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med, 1997. 3(5): 541–4.PubMedCrossRefGoogle Scholar
  7. 7.
    Blankesteijn, W.M., et al., Beta-catenin, an inducer of uncontrolled cell proliferation and migration in malignancies, is localized in the cytoplasm of vascular endothelium during neovascularization after myocardial infarction. Am J Pathol, 2000. 157(3): 877–83.PubMedCrossRefGoogle Scholar
  8. 8.
    Chien, G.L., et al., “Normothermic range” temperature affects myocardial infarct size. Cardiovasc Res, 1994. 28(7): 1014–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Creemers, E., et al., Disruption of the plasminogen gene in mice abolishes wound healing after myocardial infarction. Am J Pathol, 2000. 156(6): 1865–73.PubMedCrossRefGoogle Scholar
  10. 10.
    Creemers, E.E., et al., Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res, 2001. 89(3): 201–10.PubMedCrossRefGoogle Scholar
  11. 11.
    Creemers, E.E., et al., Deficiency of Tissue Inhibitor of Matrix Metalloproteinase-1 Exacerbates LV Remodeling Following Myocardial Infarction in Mice. Am J Physiol Heart Circ Physiol, 2002. 26: 26.Google Scholar
  12. 12.
    De Celle, T., et al., 7-Monohydroxyethylrutoside, a semisynthetic flavonoid, prevents deterioration of cardiac function in a mouse model of myocardial-ischemia. Hypertension, 2002. 40: 568 (abstract).Google Scholar
  13. 13.
    Dumont, E.A., et al., Cardiomyocyte death induced by myocardial ischemia and reperfusion: measurement with recombinant human annexin-V in a mouse model. Circulation, 2000. 102(13): 1564–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Eren, M., et al., Age-dependent spontaneous coronary arterial thrombosis in transgenic mice that express a stable form of human plasminogen activator inhibitor-1. Circulation, 2002. 106(4): 491–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Gao, X.M., et al., Serial echocardiographic assessment of left ventricular dimensions and function after myocardial infarction in mice. Cardiovasc Res, 2000. 45(2): 330–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Georgakopoulos, D. and D. Kass, Minimal force-frequency modulation of inotropy and relaxation of in situ murine heart. J Physiol, 2001. 534(Pt. 2): 535–45.PubMedCrossRefGoogle Scholar
  17. 17.
    Gijn, M.v., et al., Immunization of mice with a fragment of the frizzled 2 protein attenuates wound healing after myocardial infarction. Circulation, 2001. 104(17): 11–272 (abstract).Google Scholar
  18. 18.
    Gould, K.E., et al., Heart failure and greater infarct expansion in middle-aged mice: a relevant model for postinfarction failure. Am J Physiol Heart Circ Physiol, 2002. 282(2): H615–21.PubMedGoogle Scholar
  19. 19.
    Guo, Y., et al., Demonstration of an early and a late phase of ischemic preconditioning in mice. Am J Physiol, 1998. 275(4 Pt 2): H1375–87.PubMedGoogle Scholar
  20. 20.
    Heymans, S., et al., Inhibition of plasminogen activators or matrix metalloproteinases prevents cardiac rupture but impairs therapeutic angiogenesis and causes cardiac failure. Nat Med, 1999. 5(10): 1135–42.PubMedCrossRefGoogle Scholar
  21. 21.
    Hoffmeyer, M.R., et al., Myocardial ischemia/reperfusion injury in NADPH oxidase-deficient mice. Circ Res, 2000. 87(9): 812–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Janssen, B., et al., Chronic measurement of cardiac output in conscious mice. Am J Physiol Regul Integr Comp Physiol, 2002. 282(3): R928–35.PubMedGoogle Scholar
  23. 23.
    Janssen, B.J., P.J. Leenders, and J.F. Smits, Short-term and long-term blood pressure and heart rate variability in the mouse. Am J Physiol (Regul Integr Comp Physiol), 2000. 278(1): R215–25.Google Scholar
  24. 24.
    Janssen, B.J. and J.F. Smits, Autonomic control of blood pressure in mice: basic physiology and effects of genetic modification. Am J Physiol (Regul Integr Comp Physiol), 2002. 282(6): R1545–64.Google Scholar
  25. 25.
    Just, A., J. Faulhaber, and H. Ehmke, Autonomic cardiovascular control in conscious mice. Am J Physiol Regul Integr Comp Physiol, 2000. 279(6): R2214–21.PubMedGoogle Scholar
  26. 26.
    Kanno, S., et al., Echocardiographic evaluation of ventricular remodeling in a mouse model of myocardial infarction. J Am Soc Echocardiogr, 2002. 15(6): 601–9.PubMedCrossRefGoogle Scholar
  27. 27.
    Kogan, M.E., et al., Modeling of myocardial pathology in mice with the surgical methods]. Kardiologiia, 1977. 17(6): 125–8.PubMedGoogle Scholar
  28. 28.
    Liao, Y., et al., Echocardiographic assessment of LV hypertrophy and function in aortic-banded mice: necropsy validation. Am J Physiol (Heart Cire Physiol), 2002. 282(5): H 1703–8.Google Scholar
  29. 29.
    Liu, Y.H., et al., Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension, 2002. 39(2 Pt 2): 375–81.PubMedCrossRefGoogle Scholar
  30. 30.
    Lutgens, E., et al., Chronic myocardial infarction in the mouse: cardiac structural and functional changes. Cardiovasc Res, 1999. 41(3): 586–93.PubMedCrossRefGoogle Scholar
  31. 31.
    Manning, W.J., et al., Echocardiographically detected myocardial infarction in the mouse. Lab Anim Sci, 1993. 43(6): 583–5.PubMedGoogle Scholar
  32. 32.
    Michael, L.H., et al., Myocardial infarction and remodeling in mice: effect of reperfusion. Am J Physiol, 1999. 277(2 Pt 2): H660–8.PubMedGoogle Scholar
  33. 33.
    Nemoto, S., et al., Effects of changes in left ventricular contractility on indexes of contractility in mice. Am J Physiol(Heart Cire Physiol), 2002. 283(6): H2504–10.Google Scholar
  34. 34.
    Patten, R.D., et al., Ventricular remodeling in a mouse model of myocardial infarction. Am J Physiol, 1998. 274(5 Pt 2): H1812–20.PubMedGoogle Scholar
  35. 35.
    Radaelli, A., et al., Altered blood pressure variability in patients with congestive heart failure. J Hypertens, 1999. 17(12 Pt 2): 1905–10.PubMedCrossRefGoogle Scholar
  36. 36.
    Redfield, M.M., Heart failure--an epidemic of uncertain proportions. N Engl J Med, 2002. 347(18): 1442–4.PubMedCrossRefGoogle Scholar
  37. 37.
    Ross, A.J., et al., Serial MRI evaluation of cardiac structure and function in mice after reperfused myocardial infarction. Magn Reson Med, 2002. 47(6): 1158–68.PubMedCrossRefGoogle Scholar
  38. 38.
    Scherrer-Crosbie, M., et al., Three-dimensional echocardiographic assessment of left ventricular wall motion abnormalities in mouse myocardial infarction. J Am Soc Echocardiogr, 1999. 12(10): 834–40.PubMedCrossRefGoogle Scholar
  39. 39.
    Scherrer-Crosbie, M., et al., Echocardiographic determination of risk area size in a murine model of myocardial ischemia. Am J Physiol, 1999. 277(3 Pt 2): H986–92.PubMedGoogle Scholar
  40. 40.
    Shusterman, V., et al., Strain-specific patterns of autonomic nervous system activity and heart failure susceptibility in mice. Am J Physiol (Heart Circ Physiol), 2002. 282(6): H2076–83.Google Scholar
  41. 41.
    Stassen, F.R., et al., Coronary arterial hyperreactivity and mesenteric arterial hyporeactivity after myocardial infarction in the rat. J Cardiovasc Pharmacol, 1997. 29(6): 780–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Takemura, G., et al., High frequency of spontaneous acute myocardial infarction due to small coronary artery disease in dead (NZWxBXSB)F1 male mice. Am J Pathol, 1989. 135(6): 989–99.PubMedGoogle Scholar
  43. 43.
    Tall, A.R., MIghty mouse. Circ Res, 2002. 90(3): 244–5.PubMedGoogle Scholar
  44. 44.
    Van Acker, S.A., et al., Monohydroxyethylrutoside as protector against chronic doxorubicin-induced cardiotoxicity. Br J Pharmacol, 1995. 115(7): 1260–4.PubMedCrossRefGoogle Scholar
  45. 45.
    Wiesmann, F., et al., Analysis of right ventricular function in healthy mice and a murine model of heart failure by in vivo MRI. Am J Physiol Heart Circ Physiol, 2002. 283(3): H1065–71.PubMedGoogle Scholar
  46. 46.
    Willems, I.E., et al., The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol, 1994. 145(4): 868–75.PubMedGoogle Scholar
  47. 47.
    Williams, T.D., et al., Cardiovascular responses to caloric restriction and thermoneutrality in C57BL/6J mice. Am J Physiol Regul Integr Comp Physiol, 2002. 282(5): R1459–67.PubMedGoogle Scholar
  48. 48.
    Xu, J., et al., Role of AT2 receptors in the cardioprotective effect of AT1 antagonists in mice. Hypertension, 2002. 40(3): 244–50.PubMedCrossRefGoogle Scholar
  49. 49.
    Yang, X.P., et al., Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am J Physiol, 1999. 277(5 Pt 2): H1967–74.PubMedGoogle Scholar
  50. 50.
    Yang, Z., et al., Angiotensin II type 2 receptor overexpression preserves left ventricular function after myocardial infarction. Circulation, 2002. 106(1): 106–11.PubMedCrossRefGoogle Scholar
  51. 51.
    Yoshida, A., et al., Interleukin-18 reduces expression of cardiac tumor necrosis factor-alpha and atrial natriuretic peptide in a murine model of viral myocarditis. Life Sci, 2002. 70(11): 1225–34.PubMedCrossRefGoogle Scholar
  52. 52.
    Yoshida, H., et al., Quantitative analysis of myocardial infarction in (NZW x BXSB)F1 hybrid mice with systemic lupus erythematosus and small coronary artery disease. Am J Pathol, 1987. 129(3): 477–85.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2004

Authors and Affiliations

  • Ben Janssen
    • 1
  • Tijl De Celle
    • 1
  • Jos Paquay
    • 1
  • Jos Smits
    • 1
  • Matthijs Blankesteijn
    • 1
  1. 1.Department of Pharmacology &Toxicology, Cardiovascular Research Institute Maastricht (CARIM)University of MaastrichtMaastrichtthe Netherlands

Personalised recommendations