Skip to main content

Low-Index Core Fibres — The True Photonic Bandgap Approach

  • Chapter
Book cover Photonic Crystal Fibres

Abstract

The most fascinating and challenging element in the recent development of photonic crystal fibres is without doubt the potential of fabricating fibres in which light is guided in fibre cores having a lower effective refractive index than the surrounding cladding material. The attraction is that this was in contrast to any former fibre, and that such a discovery, therefore, inevitably would lead to new design and application possibilities. The basic motivating element behind this is also the fundamental curiosity of human beings to try to open up new areas, and in this case simply to “guide light in a manner nobody else had done before”. This fundamental driving force may be seen as a very academic task, but at the same time it has the highly practical aspect of containing the potential of creating new fibres and components with radically different properties compared to the existing possibilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. V. Kaiser, and H. W. Astle, “Low loss single material fibers made from pure fused silica”, The Bell System TechnicalJournal, Vol.53, pp.1021-1039, 1974

    Google Scholar 

  2. V. Vali, and D. B. Chang “Low index of refraction optical fiber with tubular core and/or cladding”, US Patent 5155792, 1992.

    Google Scholar 

  3. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical Review Letters, Vol.58, pp.2059-62, May 1987.

    Article  Google Scholar 

  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Physical Review Letters, Vol. 58, no. 23, pp. 2486-9, 1987.

    Article  Google Scholar 

  5. J. Knight, T. Birks, D. Atkin, and P. Russell, “Pure silica single-mode fibre with hexagonal photonic crystal cladding,”, Optical Fiber Communication Conference, Vol. 2, p. CH35901, 1996.

    Google Scholar 

  6. J. Knight, J. Broeng, T. Birks, and P. Russell, “Photonic band gap guidance in optical fibers”, Science, Vol. 282, pp. 1476-1478, Nov. 20, 1998.

    Article  Google Scholar 

  7. J. Broeng, S. Barkou, and A. Bjarklev, “Waveguiding by the photonic band gap effect,” Topical meeting on Electromagnetic Optics, (Hyeres, France), pp. 67-68, EOS, September 1998.

    Google Scholar 

  8. J. A. West, N.Venkataraman, C. M. Smith, M. T. Gallagher, “Photonic Crystal Fibres”. ECOC’2001, Amsterdam, Netherlands, Paper Th.A.2,pp. 582-585, Sept. 30th- Oct. 4th 2001.

    Google Scholar 

  9. N. Venkataraman, M. T. Gallagher, C. M. Smith, D. Müller, J. A. West, K. W. Koch, J. C. Fajardo, “Low loss (13 dB/km) air core photonic band-gap fibre”, ECOC’2002, Copenhagen, Denmark, Post deadline paper PD1.1, 2002.

    Google Scholar 

  10. T. Birks, P. Roberts, P. Russell, D. Atkin, and T. Shepherd, “Full 2-d photonic bandgaps in silica/air structures”, IEE Electronics Letters, Vol. 31, pp. 1941-1943, Oct. 1995.

    Article  Google Scholar 

  11. T. Birks, J. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber”, Optics Letters, Vol. 22, pp. 961-963, July 1997.

    Article  ADS  Google Scholar 

  12. B. Scaife, “Principles of dielectrics”, Clarendon Press, 1989.

    Google Scholar 

  13. D. Cassagne, C. Jouanin, and D. Bertho, “Hexagonal photonic-band-gap structures”, Physical Review B, Vol. 53, pp. 7134-7142, March 1996.

    Article  ADS  Google Scholar 

  14. A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute photonic band gaps in the visible”, Applied Physics Letters, Vol. 72, pp. 627-629, Feb. 1998.

    Article  ADS  Google Scholar 

  15. J. Knight, T. Birks, R. Cregan, and P. Russell, “Photonic crystals as optical fibres -physics and applications”, Optical Materials, Vol.11, pp.143-151, Jan. 1999.

    Article  ADS  Google Scholar 

  16. C. Anderson and K. Giapis, “Larger two-dimensional photonic band gaps”, Physical Review Letters, Vol. 77, pp. 2949-2952, Sept. 1996.

    Article  ADS  Google Scholar 

  17. J .B. Mac Chesney, D. W. Johnson Jr., S. Bhandarkar, M. P. Bohrer, J. W. Flemming, E. M. Monberg, and D. J. Trevor, “Optical fibres using sol-gel silica overcladding tubes”, IEE Electronics Letters, Vol. 33, No. 18, p. 1573, 1997.

    Article  Google Scholar 

  18. J. Knight, T. Birks, P. Russell, and J. Sandro, “Properties of photonic crystal fiber and the effectice index model”, Journal of the Optical Society of America A, vol. 15, pp. 748-52, March 1998.

    Article  ADS  Google Scholar 

  19. G.Agrawal, “Nonlinear fiber optics”, Academic Press, seconded., 1995.

    Google Scholar 

  20. A. Snyder and J. Love, “Optical waveguide theory”, Kluwer Academic Publishers, 2000, ISBN: 0-412-09950-0.

    Google Scholar 

  21. J.Fleming, “Material dispersion in lightguide glasses”, IEE Electronics Letters, vol.14, pp. 326-328, 1978.

    Article  ADS  Google Scholar 

  22. T. Monro, D. Richardson, and N. Broderick, “Holey fibres: an efficient modal model,” Journal of Lightwave Technology, vol. 17, pp. 1093-1102, June 1999.

    Article  ADS  Google Scholar 

  23. J. Ranka, R. Windeler, and A. Stentz, “Efficient visible continuum generation in air-silica micro structure optical fibers with anomolous dispersion at 800 nm”, Conference on Laser and Electro-Optics, CLEO’99, Baltimore,May 1999. CPD8.

    Google Scholar 

  24. A. Ferrando, E. Silvestre, J. Miret, J. Monsoriu, M. Andres, and P. Russell, “Designing a photonic crystal fibre with flattened chromatic dispersion”, IEE Electronics Letters, vol. 24, pp. 276-278, March 1999.

    ADS  Google Scholar 

  25. M. Gander, R. McBride, J. Jones, D. Mogilevtsev, T. Birks, J. Knight, and P. Russell, “Experimental measurement of group velocity dispersion in photonic crystal fibre”, IEE Electronics Letters, vol. 35, pp. 63-43, Jan. 1999.

    Article  Google Scholar 

  26. A.Bjarklev, “Optical Fiber Amplifiers: Design and System Applications”, Artech House, Boston-London, August 1993.

    Google Scholar 

  27. T. Baba and T.Matsuzaki, “Polarisation changes in spontaneous emission from GalnAsP/InP two-dimensional photonic crystals”, IEE Electronics Letters, Vol. 31, pp. 1776-1778, Sept. 1995.

    Article  Google Scholar 

  28. R. Cregan, B.Mangan, J. Knight, T. Birks, P. Russell, P. Roberts, and D. Allan, “Single-mode photonic band gap guidance of light in air”, Science, Vol. 285, pp. 1537-1539, Sept. 1999.

    Article  Google Scholar 

  29. J.Harrington, “Fiber optics for the delivery of 3 and 10.6 micron energy for laser surgery,” LEOS ’93 Conference Proceedings, pp. 225-226, 1993.

    Google Scholar 

  30. Y. Matsuura and M. Miyagi, “High power hollow fibers”, SPIE-Int. Soc. Opt. Eng., Vol. 3343, pp. 222-227, 1998.

    ADS  Google Scholar 

  31. A. Ferrando, and J. J. Miret, “Single-polarization single-mode intraband guidance in supersquare photonic crystal fibres”, Applied Physics Letters, Vol.78, No.21, pp.3184-3186, 2001.

    Article  ADS  Google Scholar 

  32. F. P. Kapron, D. B. Heck, and R. D. Maurer, “Radiation losses in glass optical waveguides, Applied Physics. Letters, Vol.17, p.423-425, 1970.

    Article  ADS  Google Scholar 

  33. T. P. White, R. C. McPhedran, L. C. Botten, G. H. Smith, and C. M. de Sterke, “Calculations of air-guided modes in photonic crystal fibers using the multipole method”, Opt. Express, Vol. 9, p. 721-732, 2001.

    Article  ADS  Google Scholar 

  34. T.P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H.R. Simonsen, M.D. Nielsen, P.M.W. Skovgaard, J.R. Folkenberg, and A. Bjarklev, “Air-guidance over 345 m of large-core photonic bandgap fiber”, Optical Fiber Communication Conference OFC’03, Post Deadline paper, 2003.

    Google Scholar 

  35. M. van Eijkelenborg, M. Large, A. Argyros, J. Zagari, S. Manos, N. A. Issa, I. M. Bassett, S. C. Fleming, R. C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre”, Opt. Express, Vol. 9, pp. 319-327, 2001.

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bjarklev, A., Broeng, J., Bjarklev, A.S. (2003). Low-Index Core Fibres — The True Photonic Bandgap Approach. In: Photonic Crystal Fibres. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0475-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0475-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5095-8

  • Online ISBN: 978-1-4615-0475-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics