Fabrication of Photonic Crystal Fibres

  • Anders Bjarklev
  • Jes Broeng
  • Araceli Sanchez Bjarklev


The idea of producing optical fibres from a single low-loss material with microscopic air holes goes back to the early days of optical fibre technology, and already in 1974 Kaiser et al. [4.1] reported the first results on singlematerial silica optical fibres. In the early days — as well as today — the key issues have been to obtain a desired fibre structure for a given application, and maintain this structure for very long fibre lengths. It will, generally, be needed that the fibre attenuation is kept at a rather low level, and the acceptable attenuation level will be given by the specific application. In this chapter, we will address the fundamental issues of fabrication of photonic crystal fibres, by first discussing the most commonly used preform fabrication method. Secondly, we will report details about the fibre drawing and coating procedure. Furthermore, we will discuss how additional doping techniques are needed for providing hybrid fibre types (such as the holeassisted lightguide fibre (HALF) [4.6]) combining the approach of microstructuring with index-raised doped glass or active dopants such as rare-earth ions needed for new amplifiers and lasers. The chapter will also shortly address the issues of photonic crystal fibres in low-melting-point glasses and polymers.


Surface Tension Force Fibre Preform Microstructured Fibre SF57 Glass Standard Optical Fibre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [4.1]
    P.V.Kaiser, and H.W.Astle, “Low-loss single-material fibers made from pure fused silica”, The Bell System Technica journal, Vol.53, 1974, pp.1021-1039.Google Scholar
  2. [4.2]
    A. Bjarklev, “Optical Fiber Amplifiers: Design and System Application”, Artech House, Boston-London, August 1993, ISBN: 0-89 006-659-0.Google Scholar
  3. [4.3]
    C.K.Kao, “Optical Fibre”, Peter Peregrinus, London, 1988.Google Scholar
  4. [4.4]
    Biomedical Sensors, Fibers, and Optical Delivery Systems, vol. 3570 of Proceedings of the SPIE- The International Society for Optical Engineering, 1999.Google Scholar
  5. [4.5]
    T. Birks, D. Atkin, G. Wylangowski, P. Russell, and P. Roberts, “2D photonic band gap structures in fibre form,” Photonic Band Gap Materials (C. Soukoulis, ed.), Kluwer, 1996.Google Scholar
  6. [4.6]
    T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss”, Optics Express, Vol.9, No.13, Dec.2001, pp.681-686.ADSCrossRefGoogle Scholar
  7. [4.7]
    J. Knight, J. Broeng, T. Birks, and P. Russell, “Photonic band gap guidance in optical fibers,” Science, Vol. 282, Nov. 1998, pp.1476-1478.CrossRefGoogle Scholar
  8. [4.8]
    J. Broeng, D. Mogilevtsev, S. Barkou, and A. Bjarklev, “Photonic crystal fibres: a new class of optical waveguides,” Optical Fiber Technology, Vol.5, July 1999, pp. 305-30.ADSCrossRefGoogle Scholar
  9. [4.9]
    T. Hasegawa, E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, “Novel hole-assisted lightguide fiber exhibiting large anomalous dispersion and low loss below 1 dB/km”, OFC’2001, 2001, Post deadline paper PD5.Google Scholar
  10. [4.10]
    T. Hasegawa, E. Sasaoka, M. Onishi, M..Nishimura, Y. Tsuji, and M. Koshiba, “Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss” Optics Express, Vol.9, No.13, Dec.2001, pp.681-686.ADSCrossRefGoogle Scholar
  11. [4.11]
    P.J.Bennett, T.M. Monro, and D. J. Richardson, ‘Towards practical holey fibre technology: fabrication, splicing, modelling and characterization’, Optics Letters, Vol.24, 1999, pp.1203-1205.ADSCrossRefGoogle Scholar
  12. [4.12]
    T. M. Monro, Y. D. West, D. W. Hewak, N.G. R. Broderick, and D. J. Richardson, “Chalcogenide holey fibres”, IEE Electronics Letters, Vol.36, No.24, Nov.2000.Google Scholar
  13. [4.13]
    Y. D. West, T. Schweizer, D. J. Brady, and D. W. Hewak, “Gallium lanthanum sulphide fibers for infrared transmission”, Fiber and Integrated Optics, Vol.19, 2000, pp.229-250.ADSCrossRefGoogle Scholar
  14. [4.14]
    A. Argyros, I. M. Bassett, M. A.van Eijkelenborg, M. C. J. Large, J. Zagari, N. A. P. Nicorovoci, R. C. McPhedran, and C. M. de Sterke, “Ring structures in microstructured polymer optical fibres”, Optics Express, Vol.9, No.13, Dec.2001, pp.813-820.ADSCrossRefGoogle Scholar
  15. [4.15]
    A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modelling the fabrication of hollow fibers: Capillary drawing”, IEEE Journal of Lightwave Technology, Vol.19, No. 12, Dec.2001, pp. 1924-1930.CrossRefGoogle Scholar
  16. 4.16
    J. Broeng, “Photonic crystal fibres”, Ph.D. Thesis, Research Center COM, Technical University of Denmark, September 30, 1999, ISBN:87-90 974-07-7Google Scholar
  17. [4.17]
    J. B. Eom, K. W. Park, Y.Chung, W-T. Han, U-C. Paek, D. Y. Kim, and B. H. Lee, “Optical properties measurement of several photonic crystal fibers”, SPIE, Photonics West 2002, San Jose, CA, USA.Google Scholar
  18. [4.18]
    M. A. van Eijkelenborg, M. C. J. Large, A. Argyros, J. Zagari, S. Manos, N. Issa, I. Bassett, S. Fleming, R.C. McPhedran, C. M. de Sterke, and N. A. P. Nicorovici, “Microstructured polymer optical fibre”, Optics Express, Vol.9, 2001, pp.319-327.ADSCrossRefGoogle Scholar
  19. [4.19]
    P.W. France, and M.C. Brierley, “Progress in Fluoride Fibre Lasers and Amplifiers”, Proceedings of Society of Photo-Optical Instrumentation Engineers Conference, OE/Fibers’90, part: Fiber Laser Sources and Amplifiers II, San Jose, Sepot.1990, Vol.1373, pp.33-39.CrossRefGoogle Scholar
  20. [4.20]
    T.M. Monro, K.M. Kiang, J.H. Lee, K. Frampton, Z. Yusoff, R. Moore, J. Tucknott, D.W. Hewak, H.N. Rutt, and D.J. Richardson, “Highly nonlinear extruded single-mode holey optical fibers”, Proc OFC’2002, OSA Technical Digest 315-317, Anaheim, California, 2002.Google Scholar
  21. [4.21]
    K.M. Kiang, K. Frampton, T.M. Monro, R. Moore, J. Tucknott, D.W. Hewak, D.J. Richardson, and H.N. Rutt, “Extruded singlemode non-silica glass holey optical fibres”, IEE Electronics Letters, Vol.38, No. 12, June 2002, pp.546-547.CrossRefGoogle Scholar
  22. [4.22]
    S.R.Friberg, and P.W.Smith, “Nonlinear optical glasses for ultrafast optical switches”, IEEE Journal of Quantum Electronics, Vol.QE-23, 1987, pp.2089-2234.ADSCrossRefGoogle Scholar
  23. [4.23]
    G.P.Agrawal, “Nonlinear Fibre Optics”, Academic Press, San Diego, 1995.Google Scholar
  24. [4.24]
    J. B. Nielsen, T. Søndergaard, S. E. Barkou, A. Bjarklev, J. Broeng, M. B. Nielsen, “Two-dimensional Kagome structure, fundamental hexagonal photonic crystal configuration”, IEE Electronics Letters, Vol. 35, No. 20, pp. 1736-1737, 1999.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2003

Authors and Affiliations

  • Anders Bjarklev
  • Jes Broeng
  • Araceli Sanchez Bjarklev

There are no affiliations available

Personalised recommendations