Skip to main content

Fundamentals of Photonic Crystal Waveguides

  • Chapter
Photonic Crystal Fibres

Abstract

The aim of this chapter is to introduce the general concept of photonic crystals. The chapter will start by guiding the reader to an understanding of photonic crystals and explain their basic characteristics, and indicate methods of fabrication and potential applications. The purpose of the chapter is not to give an exhaustive presentation of the wide field of photonic crystals, but to establish a fundamental understanding of the concepts, terminology and theoretical tools that is required for conducting research in photonic crystal waveguides. Readers interested in general aspects of photonic crystals are pointed to the introductory book by Joannopoulos et al, [2.1], or the more recent book by Johnson et al. [2.2]. We may also recommend one of the very good web-sites [2.12], where relevant papers such as e.g., [2.90-2.91] may be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Joannopoulos, I. Winn, and R. Meade, “Photonic Crystals: Molding the Flow of Light”, Princeton University Press, 1995. ISBN:0-691-03744-2

    MATH  Google Scholar 

  2. S. G. Johnson, and J. Joannopoulos, “Photonic Crystals: The Road from Theory to Practice”, Kluwer Academic Publishers, 2002. ISBN: 0-7923-7609-9.

    Google Scholar 

  3. J. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature, vol. 386, pp. 143-149, March 1997.

    Article  ADS  Google Scholar 

  4. E. Yablonovitch, “Photonic band-gap structures”, Journal of the Optical Society of America B, vol. 10, pp. 283-295, Feb. 1993.

    Article  ADS  Google Scholar 

  5. C. Soukoulis, ed., “Photonic band gaps and localization”, Proceedings of the NATO advanced research workshop, Heraklion 1992, vol. 308 of NATO ASI series. Series B, Physics, Dordrecht: Kluwer, 1993.

    Google Scholar 

  6. E. Burstein and C. Weisbuch, eds., “Confined electrons and photons New physics and applications”, Proceedings of a NATO Advanced Study Institute, Erice 1993, vol. 340 of NATO ASI series. Series B, Physics, New York, N.Y. : Plenum Press, 1995.

    Google Scholar 

  7. C. Soukoulis, ed., “Photonic band gap materials”, Proceedings of the NATO advanced study institute, Elounda 1995, vol. 315 of NATO ASI series. Series E, Applied sciences, Dordrecht: Kluwer, 1996.

    Google Scholar 

  8. J. Rarity and C. Weisbuch, eds., “Microcavities and photonic band gaps Physics and applications”, NATO ASI series. Vol. 324, Series E, Applied sciences, Dordrecht: Kluwer, 1996.

    Google Scholar 

  9. C. M. Bowden, J. P. Dowling, and H. O. Everitt (Editors), “Development and Applications of Materials Exhibiting Photonic Band Gaps”, Journal of the Optical Society of America B, vol. 10, Feb. 1993, special issue.

    Google Scholar 

  10. [2.10] Special issue on: “Photonic Crystals and Photonic Microstructures”, Vol. 145, IEE Proceedings - Optoelectronics, Dec. 1998.

    Google Scholar 

  11. [2.11] J. Dowling, H. Everitt, and E. Yablonovitch, “Photonic & sonic band-gap bibliography”, http://home. earthlink. net/jpdowling/pbgbib. html.

    Google Scholar 

  12. [2.12] Y.Vlasov, “The ultimate collection of photonic band gap research links”, http://www.pbglink. com.

    Google Scholar 

  13. S. Ramo, J. Whinnery, and T.Van Duzer, “Fields and waves in communications electronics”, Wiley, 1994

    Google Scholar 

  14. G. Agrawal, “Fiber-optic communications systems”, Wiley Inter science, seconded., 1997.

    Google Scholar 

  15. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical Review Letters, Vol.58, pp.2059-62, May 1987.

    Article  ADS  Google Scholar 

  16. S.John, “Strong localization of photons in certain disordered dielectric superlattices”, Physical Review Letters, Vol. 58, no. 23, pp. 2486-9, 1987.

    Article  ADS  Google Scholar 

  17. D. Chigrin, A. Lavrinenko, D. Yarotsky, and S. Gaponenko, “Observation of total omni-directional reflection from a one-dimensional dielectric lattice”, Appl. Phys. A, vol. 68, pp. 25-28, 1999.

    Article  ADS  Google Scholar 

  18. Y. Fink, J. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector”, Science, vol. 282, pp. 1679-1682, Nov. 1999.

    Article  ADS  Google Scholar 

  19. T. Søndergaard, J. Broeng, A. Bjarklev, K. Dridi, and S. Barkou, “Suppression of spontaneous emission for a two-dimensional honeycomb photonic band gap structure estimated using a new effective-index model”, IEEE Journal of Quantum Electronics, vol. 34, pp. 2308-2313, Dec. 1998.

    Article  ADS  Google Scholar 

  20. T. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths”, Nature, vol. 383, pp. 699-702, 24 Oct. 1996.

    Article  ADS  Google Scholar 

  21. M. Plihal and A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Physical Review B, vol. 44, pp. 8565-8571, Oct. 1991.

    Article  ADS  Google Scholar 

  22. S. McCall, P. Platzman, R. Dalichaouch, D. Smith, and S. Schultz, “Microwave propagation in two-dimensional dielectric lattices”, Physical Review Letters, vol. 67, pp. 2017-2020, Oct. 1991.

    Article  ADS  Google Scholar 

  23. R. Meade, K. Brommer, A. Rappe, and J. Joannopoulos, “Existence of a photonic band gap in two dimensions”, Applied Physics Letters, vol. 61, pp. 495-497, July 1992.

    Article  ADS  Google Scholar 

  24. P. Villeneuve and M. Piche, “Photonic band gaps in two-dimensional square and hexagonal lattices”, Physical Review B, vol. 46, pp. 4969-4972, Aug. 1992.

    Article  ADS  Google Scholar 

  25. A. Maradudin and A. McGurn, “Photonic band structure of a truncated, two-dimensional, periodic dielectric medium”, Journal of the Optical Society of America B, vol. 10, pp. 307- 313, Feb. 1993.

    Article  ADS  Google Scholar 

  26. J. Gerard, A. Izrael, J. Marzin, R. Padjen, and F. Ladan, “Photonic bandgap of two- dimensional dielectric crystals”, Solid-State Electronics, vol. 37, pp. 1341-1344, April-June 1994.

    Article  ADS  Google Scholar 

  27. H.- B. Lin, R. Tonucci, and A. Campillo, “Observation of two-dimensional photonic band behavior in the visible”, Applied Physics Letters, vol. 68, pp. 2927-2929, May 1996.

    Article  ADS  Google Scholar 

  28. C. Anderson and K. Giapis, “Larger two-dimensional photonic band gaps”, Physical Review Letters, Vol. 77, pp. 2949-2952, Sept. 1996.

    Article  ADS  Google Scholar 

  29. A. Rosenberg, R. Tonucci, H.-B. Lin, and A. Campillo, “Near-infrared two-dimensional photonic band-gap materials”, Optics Letters, Vol. 21, pp. 830-832, June 1996.

    Article  ADS  Google Scholar 

  30. K. Inoue, M. Wada, K. Sakoda, M. Hayashi, T. Fukushima, and A. Yamanaka, “Near-infrared photonic band gap of two-dimensional triangular air-rod lattices as revealed by transmittance measurement”, Physical Review B, Vol. 53, pp. 1010-1013, Jan. 1996.

    Article  ADS  Google Scholar 

  31. V. Kuzmiak, A. A. Maradudin, and A. R. McGurn, “Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal”, Physical Review - Section B - Condensed Matter, Vol. 55, pp. 4298-4311, Feb. 1997.

    Article  ADS  Google Scholar 

  32. V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation”, Physical Review - Section B - Condensed Matter, Vol. 55, pp.7427-7444, Mar. 1997.

    Article  ADS  Google Scholar 

  33. D. Labilloy, H. Benisty, C. Weisbuch, T. Krauss, R. Houdre, and U. Oesterle, “Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensional photonic crystals”, Applied Physics Letters, Vol. 71, pp. 738-740, Aug. 1997.

    Article  ADS  Google Scholar 

  34. D. Cassagne, C. Jouanin, and D. Bertho, “Optical properties of two-dimensional photonic crystals with graphite structure”, Applied Physics Letters, Vol. 70, pp. 289-291, Ian. 1997.

    Article  ADS  Google Scholar 

  35. A. Barra, D. Cassagne, and C. Jouanin, “Existence of two-dimensional absolute photonic band gaps in the visible”, Applied Physics Letters, Vol. 72, pp. 627-629, Feb. 1998.

    Article  ADS  Google Scholar 

  36. M. Charlton and G. Parker, “Nanofabrication of advanced waveguide structures incorporating a visible photonic band gap”, J. Micromech. Microeng., Vol. 8, pp. 172-176, Jun. 1998.

    Article  ADS  Google Scholar 

  37. J. Nielsen, T. Sondergaard, S. Barkou, A. Bjarklev, J. Broeng, and M. Nielsen, “The two-dimensional Kagome structure, a new fundamental hexagonal photonic crystal configuration”, IEE Electronics Letters, Vol. 35, pp. 1736-1737, Sept. 1999.

    Article  Google Scholar 

  38. T. Birks, P. Roberts, P. Russell, D. Atkin, and T. Shepherd, “Full 2-d photonic bandgaps in silica/air structures”, IEE Electronics Letters, Vol. 31, pp. 1941-1943, Oct. 1995.

    Article  Google Scholar 

  39. J. Broeng, S. Barkou, A. Bjarklev, J. Knight, T. Birks, and P. Russell, “Highly increased photonic band gaps in silica/air structures”, Optics Communications, Vol. 156, pp. 240-244, Nov. 1998.

    Article  ADS  Google Scholar 

  40. A. Maradudin and A. McGurn, “Out of plane propagation of electromagnetic waves in a two-dimensional periodic dielectric medium”, Journal of Modern Optics, Vol. 41, pp. 275- 284, Feb. 1994.

    Article  ADS  Google Scholar 

  41. P. Roberts, T. Birks, P. Russell, T. Shepherd, and D. Atkin, “Two-dimensional photonic band-gap structures as quasi-metals”, Optics Letters, Vol. 21, pp. 507-509, April 1996.

    Article  ADS  Google Scholar 

  42. X. Feng and Y. Arakawa, “Off-plane angle dependence of photonic band gap in a two-dimensional photonic crystal”, IEEE Journal of Quantum Electronics, Vol. 32, pp. 535-542, Mar. 1996.

    Article  ADS  Google Scholar 

  43. A. Mekis, J. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides”, Physical Review Letters, Vol. 77, pp. 3787-3790, act. 1996.

    Article  ADS  Google Scholar 

  44. R. Ziolkowski, “FDTD modelling of photonic nanometer-sized power splitters and switches”, Integrated Photonics Research, Vol. 4 of Technical Digest Series, p. IThA2, OSA, March 30-Aprill 1998.

    Google Scholar 

  45. S. Fan, P. Villeneuve, J. Joannopoulos, and H. Hails, “Channel drop tunneling through localized states”, Physical Review Letters, Vol. 80, pp. 960-963, Feb. 1998.

    Article  ADS  Google Scholar 

  46. O. Painter, R. Lee, A. Scherer, A. Yariv, P. O'Brien, J. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser”, Science, Vol. 284, pp. 1819-1821, June 1999.

    Article  Google Scholar 

  47. P. Russell, J. Pottage, J. Broeng, D. Mogilevtsev, and P. Philips, “Leak-free bound modes in photonic crystal films”, CLEO’99: Conference on Lasers and Electro-Optics, p. CWF65, May 1999.

    Google Scholar 

  48. S. Johnson, S. Fan, P. Villeneuve, J. Joannopoulos, and L. Kolodziejski, “Guided modes in photonic crystal slabs”, Physical Review B, Vol. 60, pp. 5751-5758, Aug. 1999.

    Article  ADS  Google Scholar 

  49. O. Martin, C. Girard, D. Smith, and S. Schultz, “Generalized field propagator for arbitrary finite-size photonic band gap structures”, Phys. Rev. Lett., Vol. 82, pp. 315-318, Jan. 1999.

    Article  ADS  Google Scholar 

  50. S. Lin and G. Arjavalingam, “hotonic bound states in two-dimensional photonic crystals probed by coherent-microwave transient spectroscopy,” Journal of the Optical Society of America B, vol. 11, pp. 2124-7, Oct. 1994.

    Article  ADS  Google Scholar 

  51. E. Yablonovitch, T. Gmitter, and K. Leung, “hotonic band structure: the face-centered-cubic case employing nonspherical atoms”, Physical Review Letters, Vol. 67, pp. 2295-2298, Oct. 1991.

    Article  ADS  Google Scholar 

  52. E. Ozbay, E. Michel, G. Tuttle, R. Biswas, M. Sigalas, and K.-M. Ho, “Mromachined millimeter-wave photonic band-gap crystals” Applied Physics Letters, Vol. 64, pp. 2059- 2061, April 1994.

    Article  ADS  Google Scholar 

  53. E. Brown, C. Parker, and E. Yablonovitch, “adiation properties of a planar antenna on a photonic-crystal substrate”, Journal of the Optical Society of America B, Vol. 10, pp. 404-407, Feb. 1993.

    Article  ADS  Google Scholar 

  54. S. Cheng, R. Biswas, E. Ozbay, S. McCalmont, G. Tilttle, and K-M. Ho, “ptimized dipole antennas on photonic band gap crystals” Applied Physics Letters, Vol. 67, pp. 3399-3401, Dec. 1995.

    Article  ADS  Google Scholar 

  55. L. Jasper and G. Tran, “hotonic band gap (pbg) technology for antennas” SPIE, vol 7,Iulyl996.

    Google Scholar 

  56. M. Kesler, J. Maloney, B. Shirley, and G. Smith, “Antenna design with the use of photonic band-gap materials as all-dielectric planar reflectors”, Microwave and Optical Technology Letters, Vol. II, pp. 169-174, March 1996.

    Article  Google Scholar 

  57. Y. Qian, R. Coccioli, D. Sievenpiper, V. Radisic, E. Yablonovitch, and T. Itoh, “A mirostrip patch antenna using novel photonic band-gap structures” MICROWAVE J Vol. 42, p. 66, Jan. 1999.

    Google Scholar 

  58. U. Gruning and V. Lehmann, “wo-dimensional infrared photonic crystal based on macroporous silicon” Thin Solid Films, Vol. 276, no. 151, 1996.

    Article  ADS  Google Scholar 

  59. J. Knight, T. Birks, P. Russell, and D. Atkin, “All-silica mode optical fiber with photonic crystal cladding”, Optics Letters, Vol. 21, pp. 1547-1549, Oct. 1996.

    Article  ADS  Google Scholar 

  60. S. Rowson, A. Chelnokov, and J.-M. Lourtioz, “acroporous silicon photonic crystals at 1.55 micrometers” IEE Electronics Letters, Vol. 35, No. 9, pp. 753-755, Apr. 1999.

    Article  Google Scholar 

  61. S. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths”, Nature, Vol. 394, pp. 251-253, July 1998.

    Article  ADS  Google Scholar 

  62. A. A. Zakhidov, R. Baughman, Z. Iqbal, C. Cui, I. Khayrullin, S. Dantas, J. Marti, and V. Ralchenko, “arbon structures with three-dimensional periodicity at optical wavelengths” Science, Vol. 5390, pp. 897-901, Oct. 1998.

    Article  ADS  Google Scholar 

  63. S. Kawakami, “abrication of submicrometere 3d periodic structures composed of Si/Si02”, IEE Electronics Letters, Vol. 33, p. 1260, 1997.

    Article  Google Scholar 

  64. J. Fleming and S. Lin, “ree-dimensional photonic crystal with a stop band from 1.35 to 1.95mu m”, Optics Letters, Vol. 24, pp. 49-51, Jan. 1999.

    Article  ADS  Google Scholar 

  65. P R. Fan, S. Villeneuve, and J. D. Joannopoulos, “Toretical investigation of fabrication-related disorder on the properties of photonic crystals”, J. Appl. Phys., Vol. 78, p. 1415, 1995.

    Article  ADS  Google Scholar 

  66. A. Chutinan and S. Noda, “Effects of structural fluctuations on the photonic bandgap during fabrication of a photonic crystal”, J. Opt. Soc. Am. B, Vol. 16, pp. 240-244, Feb. 1999.

    Article  ADS  Google Scholar 

  67. A.Yariv, “Propagation, modulation and oscillation in optical dielectric waveguides”, Saunders Clooege Publishing, 1991.

    Google Scholar 

  68. P. Villeneuve, S. Fan, J. Joannopoulos, K.-Y. Lim, G. Petrich, L. Kolodziejski, and R. Reif, “Air idge microcavities”, Applied Physics Letters, Vol. 67, pp. 167-169, July 1995.

    Article  ADS  Google Scholar 

  69. A. Yariv, “Quantum Electronics”, Wiley, 1988.

    Google Scholar 

  70. R. Coccioli, M. Boroditsky, K. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity”, lEE proc. -Optoelectron., Vol. 145 , Dec. 1998.

    Google Scholar 

  71. B. D'Urso, 0. Painter, J. O'Brien, T. Tombrello, A. Yariv, and A. Scherer, “Modal reflectivity in finite-depth two-dimensional photonic-crystal microcavities”, J. Opt. Soc. Am. B, Vol. 15, pp. 1155-1159, Mar. 1998.

    Article  ADS  Google Scholar 

  72. M. Boroditsky and E. Coccioli, R. Yablonovitch, “Analysis of photonic crystals for light emitting diodes using the finite difference time domain technique”, SPIE-Int. Soc. Opt. Eng., Vol. 3283, pp. 184-190, 1998.

    ADS  Google Scholar 

  73. H. Hirayama, T. Hamano, and Y. Aoyagi, “Novel spontaneous emission control using 3-dimensional photonic bandgap crystal cavity”, Mat. Sci. Eng. B-Solid, vol. 51, pp. 99-102, Feb. 1998.

    Article  Google Scholar 

  74. K. Yoshino, S. Tatsuhara, Y. Kawagishi, M. Ozaki, A. Zakhidov, and Z. Vardeny, “Amplified spontaneous emission and lasing in conducting polymers and fluorescent dyes in opals as photonic crystals”, Appl. Phys. Lett., Vol. 74, pp. 2590-2592, May 1998.

    Article  ADS  Google Scholar 

  75. K. Yoshino, S. Lee, S. Tatsuhara, Y. Kawagishi, M. Ozaki, and A. Zakhidov, “Observation of inhibited spontaneous emission and stimulated emission of rhodamine 6G in polymer replica of synthetic opal”, Appl Phys. Lett., Vol. 73, pp. 3506-3508, Dec. 1998.

    Article  ADS  Google Scholar 

  76. C. Smith, H. Benisty, D. Labilloy, U. Oesterle, R. Houdre, T. Krauss, R. De la Rue, and C. Weisbuch, “Near-infrared micro cavities confined by two-dimensional photonic bandgap crystals”, IEE Electronics Letters, Vol. 35, pp. 228-230, Feb. 1999.

    Article  Google Scholar 

  77. R. Lee, 0. Painter, B. D'Urso, A. Scherer, and A. Yariv, “Measurement of spontaneous emission from a two-dimensional photonic band gap defined micro cavity at near-infrared wavelengths”, Appl Phys. Lett, Vol. 74, pp. 1522-1524, Mar. 1999.

    Article  ADS  Google Scholar 

  78. T. Søndergaard, J. Broeng, and A. Bjarklev, “Suppression of spontaneous emission for two-dimensional GaAs photonic crystal mirocavities”, CLEO'99: Conference on Lasers and Electro Optics, p. 525, May 1999. Paper JFA2.

    Google Scholar 

  79. H. Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries”, Journal of Applied Physics, Vol. 79, pp. 7483-7492, May 1996.

    Article  ADS  Google Scholar 

  80. S.-Y. Lin, E. Chow, V. Hietala, P. Villeneuve, and J. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal”, Science, Vol. 282, pp. 274-276, Oct. 1998.

    Article  ADS  Google Scholar 

  81. O. Hanazumi, Y. Ohtera, T. Sato, and S. Kawakami, “Propagation of light beams along line defects formed in a-Si/Si02 three-dimensional photonic crystals: Fabrication and observation”, Applied Physics Letters, Vol. 74, No.6, pp. 777-779, 1999.

    Article  ADS  Google Scholar 

  82. S. Enoch, G. Tayeb, and D. Maystre, “Numerical evidence of ultrarefractive optics in photonic crystals”, Optics Communcations, Vol. 161, No.4-6, pp. 171-176, 1999.

    Article  ADS  Google Scholar 

  83. S. Lin, V. Hietala, L. Wang, and E. Jones, “Highly dispersive photonic band-gap prism”, Optics Letters, Vol. 21, pp. 1771-1773, 1996.

    Article  ADS  Google Scholar 

  84. H. Kosaka, T. Kawashima, T. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals”, Phys. Rev. B, Vol. 58, pp. 10096-10099, 1998.

    Article  ADS  Google Scholar 

  85. J. Mathews, and R. Walker, “Mathematical methods of physics”, Addison-Wesley, Redwood City, California, 1964.

    Google Scholar 

  86. C.Kittel, “Solid state physics”, John Wiley & Sons, New York, 1986.

    Google Scholar 

  87. S. I. Bozhevolnyi, J. Erland, K. Leosson K, et al. “Waveguiding in surface plasmon polariton band gap structures”, Phys. Rev. Lett., Vol. 86, No.14, pp. 3008-3011, Apr. 2001.

    Article  ADS  Google Scholar 

  88. S. G. Romanov, T. Maka, C. M. S. Torres, “Suppression of spontaneous emission in incomplete opaline photonic crystal”, J. Appl. Phys., Vol. 91, No. 11, pp. 9426-9428, Jun. 2002.

    Article  ADS  Google Scholar 

  89. H. Notomi, A. Shinya, K. Yamada, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates”, IEE Electronics Letters, Vol. 37, No.5, pp. 293-295, Mar 2001.

    Article  Google Scholar 

  90. T. Søndergaard, A. Bjarklev, M. Kristensen, J.Erland østergaard, and J.Broeng, “Designing finite-height two-dimensional photonic crystal waveguides”, Appl. Phys. Lett., Vol. 77, No. 6, pp. 785-787, Aug. 2000.

    Article  ADS  Google Scholar 

  91. Sakoda K, Sasada M, Fukushima T, Yamanaka A, Kawai N, Inoue K, “Detailed analysis of transmission spectra and Bragg-reflection spectra of a two-dimensional photonic crystal with a lattice constant of 1.15 microns”, J. Opt. Soc. Am. B, Vol. 16, No.3, pp. 361-365, Mar. 1999.

    Article  ADS  Google Scholar 

  92. C. S. Kee, J. E. Kim, H. Y. Park, K. J. Chang, H. Lim, “Essential role of impedance in the formation of acoustic band gaps” J. Appl. Phys., Vol. 87, No.4, pp. 1593-1596, Feb. 2000.

    Article  ADS  Google Scholar 

  93. P. Villeneuve, and M. Piche, “Photonic bandgaps: What is the best numerical representation of periodic structures?,” Journal of Modern Optics, vol. 41, pp. 241-256, Feb. 1994.

    Article  ADS  Google Scholar 

  94. R. Meade, A. Rappe, K. Brommer, and J. Joannopoulos, “Nature of the photonic band gap: some insights from a field analysis,” Journal of the Optical Society of America B, vol. 10, pp. 328-332, Feb. 1993.

    Article  ADS  Google Scholar 

  95. R. Meade, A. Rappe, K. Brommer, J. Joannopoulos, and 0. Alerhand, “Accurate theoretical analysis of photonic band-gap materials”, Physical Review B, vol. 48, pp. 8434-8437, Sept. 1993.

    Article  ADS  Google Scholar 

  96. H. Söziüer, J. Haus, and R. Inguva, “Photonic bands: convergence problems with the plane-wave method”, Physical Review B, vol. 45, pp. 13962-13972, June 1992.

    Article  ADS  Google Scholar 

  97. M. Teter, M. Payne, and D. Allan, “Solution of Schrödinger's equation for large systems,” Physical Review B, 1989.

    Google Scholar 

  98. D. Aspnes, “Local-field effects and effective- medium theory: A microscopic perspective,” Am.]. Phys., vol. 50, pp. 704-709, Aug. 1981.

    Article  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bjarklev, A., Broeng, J., Bjarklev, A.S. (2003). Fundamentals of Photonic Crystal Waveguides. In: Photonic Crystal Fibres. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0475-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0475-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5095-8

  • Online ISBN: 978-1-4615-0475-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics