Skip to main content

Introduction

  • Chapter

Abstract

In the world of scientific investigations, we are often facing the situation that a complex problem or the fascination of a given idea forces us to focus so much that we have a tendency to overlook the things, which should have been the true inspiration of our work. Many times, it is first at the point, when we have determined a solution to a simple sub-problem that we might generalize the finding and obtain a wider perspective. Then the situation becomes even more rewarding, when we from the more general theory become able to solve new and unforeseen problems, which at first glance had very little to do with the first sub-problem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.Bjarklev, “Optical Fiber Amplifiers: Design and System Applications”, Artech House, Boston-London, August 1993.

    Google Scholar 

  2. J. Dakin and B. Culshaw, “Optical fiber sensors. Vol.4: Applications, analysis, and .future trends”, Artech House, Boston-London, 1997.

    Google Scholar 

  3. S. Takahashi, M. Futamata, and I. Kojima, “Spectroscopy with scanning near-field optical microscopy using photon tunnelling mode,” Journal of Microscopy, Vol. 194,No.2-3, pp. 519-522, 1999.

    Article  Google Scholar 

  4. J. Knight, T. Birks, D. Atkin, and P. Russell, “Pure silica single-mode fibre with hexagonal photonic crystal cladding,”, Optical Fiber Communication Conference, Vol. 2, p. CH35901, 1996.

    Google Scholar 

  5. J. Broeng, D. Mogilevtsev, S. Barkou, and A. Bjarklev, “Photonic crystal fibres: a new class of optical waveguides”, Optical Fiber Technology, Vol. 5, pp. 305-330, July 1999.

    Article  ADS  Google Scholar 

  6. P. Rigby, “A photonic crystal fibre”, Nature, Vol. 396, pp. 415-416, 3 Dec. 1998.

    Article  ADS  Google Scholar 

  7. J. Joannopoulos, J. Winn, and R. Meade, “Photonic Crystals: Molding the Flow of Light”, Princeton University Press, 1995.

    MATH  Google Scholar 

  8. J. Joannopoulos, P. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature, Vol. 386, pp. 143-149, March 1997.

    Article  ADS  Google Scholar 

  9. A. Mekis, I. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Physical Review Letters, vol. 77, pp. 3787-3790, act. 1996.

    Article  ADS  Google Scholar 

  10. H.Benisty, “Modal analysis of optical guides with two-dimensional photonic band-gap boundaries”, Journal of Applied Physics, Vol. 79, pp. 7483-7492, May 1996.

    Article  ADS  Google Scholar 

  11. S.-Y. Lin, E. Chow, V. Hietala, P. Villeneuve, and J. Joannopoulos, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal”, Science, Vol. 282, pp. 274-276, Oct 1998.

    Article  ADS  Google Scholar 

  12. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics”, Physical Review Letters, Vol. 58, pp. 2059-2062, May 1987.

    Article  ADS  Google Scholar 

  13. S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Physical Review Letters, Vol. 58, No.23, pp. 2486-2489, 1987.

    Article  ADS  Google Scholar 

  14. E. Yablonovitch, “Photonic band-gap structures”, Journal of the Optical Society of America B, Vol. 10, pp. 283-295, Feb. 1993.

    Article  ADS  Google Scholar 

  15. S.John, “Localization of light: Theory of photonic band gap materials”, Photonic band gap materials (C. Soukoulis, ed.), Vol. 315 of NATO ASIseries. Series E, Applied sciences, pp. 563-666, Dordrecht: Kluwer, 1996.

    Google Scholar 

  16. C. Soukoulis, ed., “Photonic band gaps and localization” Proceedings of the NATO advanced research workshop, Heraklion 1992, Vol. 308 of NATO ASI series. Series B, Physics, Dordrecht: Kluwer, 1993.

    Google Scholar 

  17. E. Burstein and C. Weisbuch, eds., “Confined electrons and photons New physics and applications” Proceedings of a NATO Advanced Study Institute, Erice 1993, vol. 340 of NATO ASI series. Series B, Physics, New York,N .Y. : Plenum Press, 1995.

    Google Scholar 

  18. C. Soukoulis, ed., “Photonic band gap materials” Proceedings of the NATO advanced study institute, Elounda 1995, vol. 315 of NATO ASI series. Series E, Applied sciences, Dordrecht: Kluwer, 1996.

    Google Scholar 

  19. J. Rarity and C. Weisbuch, eds., “Microcavities and photonic band gaps” Physics and applications, vol. 324 of NATO ASI series. Series E, Applied sciences, Dordrecht: Kluwer, 1996.

    Google Scholar 

  20. T. Krauss, R. De La Rue, and S. Brand, “Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths”, Nature, Vol. 383, pp. 699-702,24 Oct. 1996.

    Article  ADS  Google Scholar 

  21. T. Baba and T. Matsuzaki, “Polarisation changes in spontaneous emission from GalnAsP/InP two-dimensional photonic crystals,” IEE Electronics Letters, Vol. 31, pp. 1776-1778, Sept. 1995.

    Article  Google Scholar 

  22. P. Evans, J. Wierer, and N. Holonyak, “Photopumped laser operation of an oxide post GaAs-AlAs superlattice photonic lattice,” Applied Physics Letters, Vol. 70, pp. 1119-1121, March. 1997.

    Article  ADS  Google Scholar 

  23. O. Painter, R. Lee, A. Scherer, A. Yariv, P. O'Brien, J. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser”, Science, Vol. 284, pp. 1819-1821, June 1999.

    Article  Google Scholar 

  24. S. Lin, J. Fleming, D. Hetherington, B. Smith, R. Biswas, K. Ho, M. Sigalas, W. Zubrzycki, S. Kurtz, and J. Bur, “A three-dimensional photonic crystal operating at infrared wavelengths”, Nature, Vol. 394, pp. 251-253, 16. July 1998.

    Article  ADS  Google Scholar 

  25. A. VanBlaaderen, “Materials science - Opals in a new light”, Science, Vol. 282, pp. 887-888, Oct. 1998.

    Article  Google Scholar 

  26. B. Goss-Levi, “Search & discovery: Visible progress made in 3d photonic crystals”, Physics Today, vol 52, pp. 17-19, Ian. 1999.

    ADS  Google Scholar 

  27. S. Ramo, J. Whinnery, and T.Van Duzer, “Fields and waves in communications electronics”, Wiley, 1994

    Google Scholar 

  28. R.Kashyap “Fiber Bragg gratings” Academic Press, San Diego, London, 1999, ISBN: 0-12-400560-8

    Google Scholar 

  29. R. C. McPhedran, N. A. Nicorovici, D. R. McKenzie, “The sea mouse and the photonic crystal”, Aust. J Chem., Vol. 54, No. 4, pp. 241-244, 2001.

    Article  Google Scholar 

  30. J. Knight, J. Broeng, T. Birks, and P. Russell, “Photonic band gap guidance in optical fibers”, Science, Vol. 282, pp. 1476-1478, No v. 20, 1998.

    Article  Google Scholar 

  31. P.V.Kaiser, and H.W. Astle, “Low-loss single-material fibers made from pure fused silica”, The Bell System Technical Journal, Vol.53, pp.1021-1039, 1974.

    Google Scholar 

  32. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding”, Optics Letters, Vol.21, No.19, pp. 1547-1549, October l.,1996.

    Article  ADS  Google Scholar 

  33. T. Birks, D. Atkin, G. Wylangowski, P. Russell, and P. Roberts, “2D photonic band gap structures in fibre form,” Photonic Band Gap Materials (C. Soukoulis, ed.), Kluwer, 1996.

    Google Scholar 

  34. T. Birks, P. Roberts, P. Russell, D. Atkin, and T. Shepherd, “Full 2-d photonic bandgaps in silica/air structures”, IEE Electronics Letters, Vol. 31, pp. 1941-1943, Oct. 1995.

    Article  Google Scholar 

  35. J. Knight, T. Birks, P. Russell, and J. Sandro, “Properties of photonic crystal fiber and the effectice index model”, Journal of the Optical Society of America A, Vol. 15, pp. 748-752, March 1998.

    Article  ADS  Google Scholar 

  36. T. Monro, D. Richardson, andN. Broderick, “Efficient modelling of holey fibers”, Optical Fiber Communication Conference, San Diego, FG3, pp. 111-113, Feb. 1999.

    Google Scholar 

  37. R. Windeler, J. Wagener, and D. DiGiovanni, “Silica-air micro structured fibers: properties and applications”, Optical Fiber Communication Conference, San Diego, FG1, pp. 106-107 , Feb. 1999.

    Google Scholar 

  38. J. Broeng, S. Barkou, A. Bjarklev, J. Knight, T. Birks, and P. Russell, “Highly increased photonic band gaps in silica/air structures”, Optics Communications, vol. 156, pp. 240-244, Nov. 1998.

    Article  ADS  Google Scholar 

  39. J. Broeng, S. Barkou, and A. Bjarklev, “Waveguiding by the photonic band gap effect,” Topical meeting on Electromagnetic Optics, (Hyeres, France), pp. 67-68, EOS, September 1998.

    Google Scholar 

  40. D. Ouzounov, D. Homoelle, W. Zipfel, “Dispersion measurements of microstructured fibers using femtosecond laser pulses”, Optics Communications, Vol. 192: (3-6), pp. 219-223, 2001.

    Article  ADS  Google Scholar 

  41. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, T. A. Strasser, “Grating resonances in air-silica microstructured optical fibers”, Optics Letters, Vol. 24, No. 21, pp. 1460-1462, Nov. 1999.

    Article  ADS  Google Scholar 

  42. T. P. Hansen, J. Broeng, S. E. B. Libori, A. Bjarklev, “Highly birefringent index-guiding photonic crystal fibers”, IEEE Photonics Technology Letters, Vol. 13, No. 6, pp. 588-590, Jun. 2001.

    Article  ADS  Google Scholar 

  43. R. Ghosh, A. Kumar, J. P. Meunier, “Waveguiding properties of holey fibres and effective-V model”, IEE Electronics Letters, Vol. 35, No. 21, pp. 1873-1875, Oct. 1999.

    Article  Google Scholar 

  44. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. Russell, J. P. de Sandro, “Large mode area photonic crystal fibre”, IEE Electronics Letters, Vol. 34, No. 13, pp. 1347-1348, Jun. 1998.

    Article  Google Scholar 

  45. J Broeng, S. E. Barkou, T. Sondergaard, A. Bjarklev, “Analysis of air-guiding photonic bandgap fibers”,Optics Letters, Vol. 25, No. 2, pp. 96-98, Jan. 2000.

    Article  ADS  Google Scholar 

  46. A. N. Naumov, A. M. Zheltikov , “Optical harmonic generation in hollow-core photonic-crystal fibres: analysis of optical losses and phase-matching conditions”, Quantum Electronics, Vol. 32, No.2, pp. 129-134, Feb. 2002.

    Article  ADS  Google Scholar 

  47. K.P. Hansen, J.R. Jensen, C. Jacobsen, H.R. Simonsen, J. Broeng, P.M.W. Skovgaard and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zerodispersion at 1.55 urn” OFC2002, postdeadline paper, paper FA9, pp. 1-3, March, 2002.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bjarklev, A., Broeng, J., Bjarklev, A.S. (2003). Introduction. In: Photonic Crystal Fibres. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0475-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0475-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5095-8

  • Online ISBN: 978-1-4615-0475-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics