Copper BEOL Interconnects for Silicon CMOS Logic Technology

  • Satya V. Nitta
  • Sampath Purushothaman
  • James G. Ryan
  • Daniel C. Edelstein
  • Panayotis Andricacos
  • Chao-Kun Hu
  • Thomas M. Shaw
  • Robert Rosenberg
  • James R. Lloyd

Abstract

The semiconductor industry has been at the forefront of the technological revolution that has changed the way we live over the last three decades. The increase in performance of the integrated circuit (IC) chip has largely been due to the decreasing dimensions on the IC chip, leading to an increase in speed of the transistor. The transistors in an IC chip need to be connected to the outside world and the first level of hierarchy in this connection is the so called “back end of the line (BEOL) interconnect”. A typical BEOL interconnect consists of a metallic wire that is surrounded by an insulating cladding called the interlayer dielectric. Over the last few technology generations, it has become increasingly evident that shrinking device dimensions alone will not continue to achieve the increases in IC chip performance that the semiconductor industry needs. This is because the delay associated with sending signals through the BEOL interconnect begins to dominate the overall delay in the IC chip as seen in (Figure 2.1) [1]. The first step towards reducing this delay is to find a suitable metal that has a lower resistivity than aluminum (Al) to replace it as the wiring metal. Of all the elements in the periodic table, the most suitable candidate to replace Al as the wiring metal is copper (Cu). However, replacing Al with Cu as the metal of choice in BEOL interconnects is far from trivial.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    1999 National Technology Roadmap for Semiconductors, Semiconductor Research Corporation and International Sematech.Google Scholar
  2. [2]
    D. Edelstein et. al., Tech. Digest IEEE IEDM, p773 (1997)Google Scholar
  3. [3]
    C. W. Kaanta et. al.,Proc. 10th International VMIC, 1993, pp 15–21.Google Scholar
  4. [4]
    J. G. Ryan et. al., IBM J. Res. Dev., 39, 4, p371 (1995)CrossRefGoogle Scholar
  5. [5]
    R. Rosenberg et. al., Annu. Rev. Mater. Sci., 30, p229 (2000)CrossRefGoogle Scholar
  6. [6]
    D. Edelstein et. al., IBM J. Res. Dev., 39, 4, p383 (1995)CrossRefGoogle Scholar
  7. [7]
    P. Solomon, Proc. SPIE, 947, pl04 (1988)Google Scholar
  8. [8]
    G. A. Sai-Halasz, ICCD Dig., p230 (1992)Google Scholar
  9. [9]
    D. Edelstein, Proc. VMIC 12, p301 (1995)MathSciNetGoogle Scholar
  10. [10]
    C. K. Hu et. al., Mater. Res. Soc. Symp., p507, (1998)Google Scholar
  11. [11]
    J. Rickerby & J. H. G. Steinke, Chem. Rev., 102, pl525 (2000)Google Scholar
  12. [12]
    P.C. Andricacos et. al., IBM J. Res. Dev., 42, 5, (1998)Google Scholar
  13. [13]
    L. T. Romankiw, US Patent 3,853,715 Google Scholar
  14. [14]
    R C. Andricacos & L. T. Romankiw, Advances in Electrochemical Science and Engineering, VCH Publishers, p227 (1994)Google Scholar
  15. [15]
    M. Datta et. al., Electrochem. Soc. 142, p3779 (1995)CrossRefGoogle Scholar
  16. [16]
    M. M. Chow et. al., it US Patent 4,789,648Google Scholar
  17. [17]
    C. K. Hu & J. M. E. Harper, Mater. Phys., 52, 5, (1998)CrossRefGoogle Scholar
  18. [18]
    T. Ritzdorf et. al., Proc. IEEE Int. lntercon. Tech. Conf., 166 (1998)Google Scholar
  19. [19]
    C. Cabral Jr., et. al., Proc. Adv. Metalliz. Conf., 81, (1998)Google Scholar
  20. [20]
    C. Lingk et. al., Proc. Adv. Metalliz. Conf., 89, (1998)Google Scholar
  21. [21]
    H. Deligianni et al, Proceedings of Symposium on Electrochemical Processing in ULSI Fabrication and Semiconductor Metal Deposition III, Electrochemical Society Proceedings, 2000–8, 145, (2000).Google Scholar
  22. [22]
    A.C. West et al, Electrochem. and Solid State Lett., 4(7), C50–C53, (2001).CrossRefGoogle Scholar
  23. [23]
    T. P. Moffat et al, Electrochem. and Solid State Lett., 4(4), C26–C29, (2001).MathSciNetCrossRefGoogle Scholar
  24. [24]
    T. P. Moffat et al, it J. Electrochem. Soc., 147 (12), 4524–4535, (2000).CrossRefGoogle Scholar
  25. [25]
    D. Josell et al, Phys. Rev. Lett., 87(l):016102–l–016102–4, July (2001).Google Scholar
  26. [26]
    P. Vereecken et al, Symposium on Electrochemical Processing in ULSI Fabrication and Semiconductor Metal Deposition IV, Electrochemical Society Extended Abstracts, Abstract No 517, (2002).Google Scholar
  27. [27]
    C-K.Hu, S. Chang, M.B. Small, J.E. Lewis, Proc. VMIC, 181 (1986)Google Scholar
  28. [28]
    L.A. Clevenger, et al., J. Appl. Phys., 73, 300 (1992)CrossRefGoogle Scholar
  29. [29]
    B. Luther, et al., Proc. VLSI Multi. Intl. Conf., 15 (1993)Google Scholar
  30. [30]
    D. Edelstein, et al., Tech. Digest of papers IEEE IEDM, 113 (1997).Google Scholar
  31. [31]
    K. Holloway, et al., J. Appl. Phys., 71, 5433 (1992).CrossRefGoogle Scholar
  32. [32]
    D. Edelstein, et al., Proc. Adv. Metalliz. Conf., (2001)Google Scholar
  33. [33]
    C-K. Hu et al., IEEE Inter. Interconnect Technology Conference (IITC), 267(1999).Google Scholar
  34. [34]
    D.S. Gardner and D. B. Fraser, Proc. VLSI VMIC, 287 (1995).Google Scholar
  35. [35]
    S. Wong et al., Mater. Res. Soc. Symp. Proc., 514, 75 (1998).CrossRefGoogle Scholar
  36. [36]
    J. M. E. Harper, private communication Google Scholar
  37. [37]
    S. Rossnagel et al., J. Vac. Sci. tech., B 14, 1819 (1996).CrossRefGoogle Scholar
  38. [38]
    C. Cabral Jr., et al., it European patent 00751566 A2 (1997) and it US Patent 6, 291, 885 (1991).Google Scholar
  39. [39]
    L. Feinstein, et al., Thin Solid Films, 16, 129 (1973).CrossRefGoogle Scholar
  40. [40]
    E. G. Colgan and P.M. Fryer, US Patents 5,221,449 (1993) and 5,281,485 (1994).Google Scholar
  41. [41]
    D. Edelstein, et al., Proc. IITC, (2001)Google Scholar
  42. [42]
    R. Rosenberg, D.C. Edelstein, C-K. Hu, and K.P. Rodbell, Annu. Rev. Mater. Sci., 2000, 30: 229–262.CrossRefGoogle Scholar
  43. [43]
    C-K. Hu, L. Gignac, E. Liniger, R. Rosenberg and A. Stamper, Proc, of International Interconnect Tech. Conf., (2002) p.259.Google Scholar
  44. [44]
    C-K. Hu, L. Gignac, E. Liniger, R. Rosenberg, J. Electrochem. Soc., 149, G408 (2002).CrossRefGoogle Scholar
  45. [45]
    C-K. Hu, et al., US Patent 6,380,075B1, 2002.Google Scholar
  46. [46]
    K. Ueno, et al., AIP Conf. Proc., (USA), no.612 (2002) pp 49–60.CrossRefGoogle Scholar
  47. [47]
    J. Curry, et al., 22nd Annual IEEE Intl. Re. Phys. Symp. Proc., pp. 6–8, 1984.Google Scholar
  48. [48]
    H. Okabayashi, Mater. Sci. Eng., R11, pp. 191–241, 1993Google Scholar
  49. [49]
    T.D. Sullivan, Ann. Rev. Mater. Sci., 26, pp. 333–364, 1996.CrossRefGoogle Scholar
  50. [50]
    T. Turner and K. Wendel, 23rd Ann. IEEE Inter. Rel. Phys. Symp. Proc., pp 142–147, 1985.Google Scholar
  51. [51]
    E.T. Ogawa, et al., 40th Ann. IEEE Inter. Rel. Phys. Symp. Proc., pp. 312–312, 2002.Google Scholar
  52. [52]
    J.M.E. Harper, et al., J. Appl. Phys., 86, pp.2516–24, 1999.CrossRefGoogle Scholar
  53. [53]
    J. Koike, et al., Sixth Int’l. Workshop on Stress Induced Phenomena in Metallization, pp. 169–176, S.P. Baker, et al., editors, AIP 2002.Google Scholar
  54. [54]
    Bai, et al., Mater. Res. Soc. Symp. Proc., 403, pp501–506, 1996.Google Scholar
  55. [55]
    R. Gonella et al., Proc. 2000 IEEE Reliability Workshop, pp. 191–192, 2000.Google Scholar
  56. [56]
    J. Noguchi, et al., 38th Ann. IEEE Intl. Rel. Phys. Symp., pp.339–343, 2000.Google Scholar
  57. [57]
    D. C. Edelstein et. al., Electrochem. Soc. Mtg., (1999)Google Scholar
  58. [58]
    A. K. Stamper, W. A. Klaasen, and R. A. Wachnik, Proc. Adv. Metallization Conf., Orlando, FL, Sept 28–30, pp9–15, 1999.Google Scholar
  59. [59]
    S. M. Sze, Semiconductor Physics and Devices, Wiley-Interscience, New York, 2nd Edition. (1981).Google Scholar
  60. [60]
    R. A. Wachnik et. al., Proc. Adv. Metalliz. Conf., (2000).Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Satya V. Nitta
    • 1
  • Sampath Purushothaman
    • 1
  • James G. Ryan
    • 1
    • 2
  • Daniel C. Edelstein
    • 1
  • Panayotis Andricacos
    • 1
  • Chao-Kun Hu
    • 1
  • Thomas M. Shaw
    • 1
  • Robert Rosenberg
    • 1
  • James R. Lloyd
    • 1
  1. 1.IBM T.J. Watson Research CenterYorktown HeightsUSA
  2. 2.IBM Microelectronics DivisionHopewell JunctionUSA

Personalised recommendations