Skip to main content

Functional Significance of Ryanodine Receptor-Mediated Calcium Leaks in Sarcoplasmic Reticulum Membranes

  • Chapter
Pathophysiology of Cardiovascular Disease

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

  • 301 Accesses

Summary

Since their original purification and identification as the main Ca2+ efflux pathway from sarcoplasmic reticulum (SR) membranes, ryanodine receptors (RyRs) have attracted an enormous level of research interest. This is not surprising for several reasons. First, they sit at the epicentre of regulatory mechanisms involved in excitation-contraction coupling. Second, RyRs represent the main building blocks of a huge multimeric protein assembly with a molecular mass estimated to be around 2.3 mega Daltons. Third, RyRs are able to bind an unprecedented number of regulatory proteins, toxins and other molecules producing, in many cases, quite complex effects upon its Ca2+ ion channel properties. Much remains to be determined about how in vitro kinetic and features of RyR activation and inactivation account for observed Ca2+ release properties in vivo. Some studies favor the idea that in intact SR membranes ATP-dependent Ca2+ pumps (SERCA) can also influence both activation and inactivation of Ca2+ release. More recently, however, we have come to appreciate the significant leakiness of SR membranes to Ca2+ at rest and the possibility that this occurs primarily through activation of RyRs. A number of more recent lines of evidence suggest this leakiness has some physiological significance in activating RyRs to initiate Ca2 + sparks and trigger Ca2+ release. Because of the potential importance of this to RyR function a great deal of interest has been generated in an attempt to reveal underlying regulatory mechanism of RyR leakiness. A class of immunophillin binding proteins, known as FKBP12/12.6, is now thought to play a very important role in determining RyR leaks in both normal and pathological settings. However, species and tissue differences in FKBP12/12.6 distribution make it hard to make any firm generalizations, at this point, regarding in vivo RyR leak regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carafoli E, Santella L, Branca D, Brini M. 2001. Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36:107–260.

    Article  PubMed  CAS  Google Scholar 

  2. Carafoli E. 2002. Calcium signaling: a tale for all seasons. Proc Natl Acad Sci U S A 99:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  3. Tsien RY. 1986. New tetracarboxylate chelators for fluorescence measurement and photochemical manipulation of cytosolic free calcium concentrations. Soc Gen Physiol Ser 40:327–345.

    PubMed  CAS  Google Scholar 

  4. Wier WG, Lopez-Lopez JR, Shacklock PS, Balke CW. 1995. Calcium signalling in cardiac muscle cells. Ciba Found Symp 188:146–160; discussion 160–144.

    PubMed  CAS  Google Scholar 

  5. Schneider MF, Klein MG. 1996. Sarcomeric calcium sparks activated by fiber depolarization and by cytosolic Ca2+ in skeletal muscle. Cell-Calcium 20:123–128.

    Article  PubMed  CAS  Google Scholar 

  6. Cannell MB. 1997. New insights into cardiac excitation-contraction coupling in normal and hypertension/failure animal models. J Hum Hypertens 11:555–558.

    Article  PubMed  CAS  Google Scholar 

  7. Kraus D, Khoury S, Fendyur A, Kachalsky SG, Abu-Hatoum T, Rahamimoff R. 2000. Intracellular calcium dynamics-sparks of insight. J Basic Clin Physiol Pharmacol 11:331–365.

    Article  PubMed  CAS  Google Scholar 

  8. Bkaily G, Jacques D, Pothier P. 1999. Use of confocal microscopy to investigate cell structure and function. Meth Enzymol 307:119–135.

    Article  PubMed  CAS  Google Scholar 

  9. Bkaily G, Pothier P, D’Orleans-Juste P, Simaan M, Jacques D, Jaalouk D, Belzile F, Hassan G, Boutin C, Haddad G, Neugebauer W. 1997. The use of confocal microscopy in the investigation of cell structure and function in the heart, vascular endothelium and smooth muscle cells. Mol Cell Biochem 172:171–194.

    Article  PubMed  CAS  Google Scholar 

  10. Protasi F, Takekura H, Wang Y, Chen SR, Meissner G, Allen PD, Franzim-Armstrong C. 2000. RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J 79:2494–2508.

    Article  PubMed  CAS  Google Scholar 

  11. Fessenden JD, Wang Y, Moore RA, Chen SR, Allen PD, Pessah IN. 2000. Divergent functional properties of ryanodine receptor types 1 and 3 expressed in a myogenic cell line. Biophys J 79:2509–2525.

    Article  PubMed  CAS  Google Scholar 

  12. Ward CW, Schneider MF, Castillo D, Protasi F, Wang Y, Chen SR, Allen PD. 2000. Expression of ryanodine receptor RyR3 produces Ca2+ sparks in dyspedic myotubes. J Physiol 525(Pt 1):91–103.

    Article  PubMed  CAS  Google Scholar 

  13. Ebashi S, Endo M. 1968. Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183.

    Article  PubMed  CAS  Google Scholar 

  14. Wagenknecht T, Radermacher M, Grassucci R, Berkowitz J, Xin HB, Fleischer S. 1997. Locations of calmodulin and FK506-binding protein on the three-dimensional architecture of the skeletal muscle ryanodine receptor. J Biol Chem 272:32463–32471.

    Article  PubMed  CAS  Google Scholar 

  15. Zhang L, Kelley J, Schmeisser G, Kobayashi YM, Jones LR. 1997. Complex formation between junctin, triadin, calsequestrin, and the ryanodine receptor. Proteins of the cardiac junctional sarcoplasmic reticulum membrane. J Biol Chem 272:23389–23397.

    Article  PubMed  CAS  Google Scholar 

  16. Campbell KP, Knudson CM, Imagawa T, Leung AT, Sutko JL, Kahl SD, Raab CR, Madson L. 1987. Identification and characterization of the high affinity [3H]ryanodine receptor of the junctional sarcoplasmic reticulum Ca2+ release channel. J Biol Chem 262:6460–6463.

    PubMed  CAS  Google Scholar 

  17. Lytton J, Westlin M, Hanley MR. 1991. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem 266:17067–17071.

    PubMed  CAS  Google Scholar 

  18. Lytton J, Westlin M, Burk SE, Shull GE, MacLennan DH. 1992. Functional comparisons between isoforms of the sarcoplasmic or endoplasmic reticulum family of calcium pumps. J Biol Chem 267:14483–14489.

    PubMed  CAS  Google Scholar 

  19. Wu KD, Lytton J. 1993. Molecular cloning and quantification of sarcoplasmic reticulum Ca(2+)-ATPase isoforms in rat muscles. Am J Physiol 264:C333–341.

    PubMed  CAS  Google Scholar 

  20. Wu KD, Lee WS, Wey J, Bungard D, Lytton J. 1995. Localization and quantification of endoplasmic reticulum Ca(2+)-ATPase isoform transcripts. Am J Physiol 269:C775–784.

    PubMed  CAS  Google Scholar 

  21. Poch E, Leach S, Snape S, Cacic T, MacLennan DH, Lytton J. 1998. Functional characterization of alternatively spliced human SERCA3 transcripts. Am J Physiol 275:C1449–1458.

    PubMed  CAS  Google Scholar 

  22. Wu KD, Bungard D, Lytton J. 2001. Regulation of SERCA Ca2+ pump expression by cytoplasmic Ca2+ in vascular smooth muscle cells. Am J Physiol Cell Physiol 280:C843–851.

    PubMed  CAS  Google Scholar 

  23. de Meis L, Vianna AL. 1979. Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Ann Rev Biochem 48:275–292.

    Article  PubMed  Google Scholar 

  24. Ribeiro JM, Aragao ES, Vianna AL. 1980. Steady state kinetics of the (Ca2+ + Mg2+)-dependent P-nitrophenylphosphatase activity of sarcoplasmic reticulum vessicles. An Acad Bras Cienc 52: 403–409.

    PubMed  CAS  Google Scholar 

  25. East JM. 2000. Sarco(endo)plasmic reticulum calcium pumps: recent advances in our understanding of structure/function and biology (review). Mol Membr Biol 17:189–200.

    Article  PubMed  CAS  Google Scholar 

  26. Stamler JS, Meissner G. 2001. Physiology of nitric oxide in skeletal muscle. Physiol Rev 81:209–237.

    PubMed  CAS  Google Scholar 

  27. Ikemoto N, Yamamoto T. 2002. Regulation of calcium release by interdomain interaction within ryanodine receptors. Front Biosci 7:d671–683.

    Article  PubMed  CAS  Google Scholar 

  28. Berman MC. 2001. Slippage and uncoupling in P-type cation pumps; implications for energy transduction mechanisms and regulation of metabolism. Biochimica Et Biophysica Acta 1513: 95–121.

    Article  PubMed  CAS  Google Scholar 

  29. Berman MC, Mcintosh DB, Davidson GA, Ross DC, Seebregts CJ. 1987. Mechanism of action of the calcium pump of sarcoplasmic reticulum of skeletal muscle. S Afr Med J 72:777–780.

    PubMed  CAS  Google Scholar 

  30. Bassani RA, Bers DM. 1995. Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes. Biophys J 68:2015–2022.

    Article  PubMed  CAS  Google Scholar 

  31. Meissner G. 1994. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Ann Rev Physiol 56:485–508.

    Article  CAS  Google Scholar 

  32. Martonosi AN. 1984. Mechanisms of Ca2+ release from sarcoplasmic reticulum of skeletal muscle. Physiol Rev 64:1240–1320.

    PubMed  CAS  Google Scholar 

  33. Fill M, Zahradnikova A, Villalba-Galea CA, Zahradnik I, Escobar AL, Gyorke S. 2000. Ryanodine receptor adaptation. J Gen Physiol 116:873–882.

    Article  PubMed  CAS  Google Scholar 

  34. Block BA, Imagawa T, Campbell KP, Franzini Armstrong C. 1988. Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600.

    Article  PubMed  CAS  Google Scholar 

  35. Franzini Armstrong C, Jorgensen AO. 1994. Structure and development of E-C coupling units in skeletal muscle. Ann Rev Physiol 56:509–534.

    Article  Google Scholar 

  36. Chandler WK, Schneider MF, Rakowski RF, Adrian RH. 1975. Charge movements in skeletal muscle. Phil Trans R Soc Lond Biol Sci 270:501–505.

    Article  CAS  Google Scholar 

  37. Endo M. 1977. Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108.

    PubMed  CAS  Google Scholar 

  38. Schneider MF, Chandler WK. 1973. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature 242:244–246.

    Article  PubMed  CAS  Google Scholar 

  39. Schneider MF. 1981. Membrane charge movement and depolarization-contraction coupling. Ann Rev Physiol 43:507–517.

    Article  CAS  Google Scholar 

  40. Fabiato A. 1985. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 85:247–289.

    Article  PubMed  CAS  Google Scholar 

  41. Dulhunty AF, Junankar PR, Stanhope C. 1992. Extra-junctional ryanodine receptors in the terminal cisternae of mammalian skeletal muscle fibres. Proc R Soc Lond B Biol Sci 247:69–75.

    Article  CAS  Google Scholar 

  42. Stern MD. 1992. Theory of excitation-contraction coupling in cardiac muscle. Biophys J 63:497–517.

    Article  PubMed  CAS  Google Scholar 

  43. Du GG, Imredy JP, MacLennan DH. 1998. Characterization of recombinant rabbit cardiac and skeletal muscle Ca2+ release channels (ryanodine receptors) with a novel [3H]ryanodine binding assay. J Biol Chem 273:33259–33266.

    Article  PubMed  CAS  Google Scholar 

  44. Du GG, MacLennan DH. 1998. Functional consequences of mutations of conserved, polar amino acids in transmembrane sequences of the Ca2+ release channel (ryanodine receptor) of rabbit skeletal muscle sarcoplasmic reticulum. J Biol Chem 273:31867–31872.

    Article  PubMed  CAS  Google Scholar 

  45. Du GG, MacLennan DH. 1999. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). J Biol Chem 274:26120–26126.

    Article  PubMed  CAS  Google Scholar 

  46. Lynch PJ, Tong J, Lehane M, Mallet A, Giblin L, Heffron JJ, Vaughan P, Zafra G, MacLennan DH, McCarthy TV. 1999. A mutation in the transmembrane/luminal domain of the ryanodine receptor is associated with abnormal Ca2+ release channel function and severe central core disease [see comments)]. Proc Natl Acad Sci U S A 96:4164–4169.

    Article  PubMed  CAS  Google Scholar 

  47. Sitsapesan R, Williams AJ. 1994. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by luminal Ca2+. J Memb Biol 137:215–226.

    Article  CAS  Google Scholar 

  48. Sitsapesan R, Williams AJ. 1995. The gating of the sheep skeletal sarcoplasmic reticulum Ca(2+)-release channel is regulated by luminal Ca2+. J Memb Biol 146:133–144.

    Article  CAS  Google Scholar 

  49. Sitsapesan R, Williams AJ. 1997. Regulation of current flow through ryanodine receptors by luminal Ca2+. J Memb Biol 159:179–185.

    Article  CAS  Google Scholar 

  50. Tong J, McCarthy TV, MacLennan DH. 1999. Measurement of resting cytosolic Ca2+ concentrations and Ca2+ store size in HEK-293 cells transfected with malignant hyperthermia or central core disease mutant Ca2+ release channels. J Biol Chem 274:693–702.

    Article  PubMed  CAS  Google Scholar 

  51. Tripathy A, Meissner G. 1996. Sarcoplasmic Reticulum Lumenal Ca2+ Has Access to Cytosolic Activation and Inactivation Sites of Skeletal Muscle Ca2+ Release Channel. Biophys J 70:2600–2615.

    Article  PubMed  CAS  Google Scholar 

  52. Chen SR, Ebisawa K, Li X, Zhang L. 1998. Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem 273:14675–14678.

    Article  PubMed  CAS  Google Scholar 

  53. Du GG, Guo X, Khanna VK, MacLennan DH. 2001. Functional characterization of mutants in the predicted pore region of the rabbit cardiac muscle Ca(2+) release channel (ryanodine receptor isoform 2). J Biol Chem 276:31760–31771.

    Article  PubMed  CAS  Google Scholar 

  54. Ikemoto N, Ronjat M, Mészáros LG, Koshita M. 1989. Postulated role of calsequestrin in the regulation of calcium release from sarcoplasmic reticulum. Biochemistry 28:6764–6771.

    Article  PubMed  CAS  Google Scholar 

  55. Kurebayashi N, Ogawa Y. 1998. Effect of luminal calcium on Ca2+ release channel activity of sarcoplasmic reticulum in situ. Biophys J 74:1795–1807.

    Article  PubMed  CAS  Google Scholar 

  56. Donoso P, Prieto H, Hidalgo C. 1995. Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle. Biophys J 68:507–515.

    Article  PubMed  CAS  Google Scholar 

  57. Kim DH, Ohnishi ST, Ikemoto N. 1983. Kinetic studies of calcium release from sarcoplasmic reticulum in vitro. J Biol Chem 258:9662–9668.

    PubMed  CAS  Google Scholar 

  58. Morii H, Tonomura Y. 1983. The gating behavior of a channel for Ca2+-induced Ca2+ release in fragmented sarcoplasmic reticulum. J Biochem 93:1271–1285.

    PubMed  CAS  Google Scholar 

  59. Morii H, Takisawa H, Yamamoto T. 1985. Inactivation of a Ca2+-induced Ca2+ release channel from skeletal muscle sarcoplasmic reticulum during active Ca2+ transport. J Biol Chem 260:11536–11541.

    PubMed  CAS  Google Scholar 

  60. Kim DH, Sreter FA, Ohnishi ST, Ryan JF, Roberts J, Allen PD, Meszaros LG, Antoniu B, Ikemoto N. 1984. Kinetic studies of Ca2+ release from sarcoplasmic reticulum of normal and malignant hyperthermia susceptible pig muscles. Biochimica et Biophysica Acta 775:320–327.

    Article  PubMed  CAS  Google Scholar 

  61. Gilchrist JS, Belcastro AN, Katz S. 1992. Intraluminal Ca2+ dependence of Ca2+ and ryanodine-mediated regulation of skeletal muscle sarcoplasmic reticulum Ca2+ release. J Biol Chem 267: 20850–20856.

    PubMed  CAS  Google Scholar 

  62. Nelson TE, Nelson KE. 1990. Intra– and extraluminal sarcoplasmic reticulum membrane regulatory sites for Ca2(+)-induced Ca2+ release. Febs Letters 263:292–294.

    Article  PubMed  CAS  Google Scholar 

  63. Nelson TE, Lin M, Volpe P. 1991. Evidence for intraluminal Ca++ regulatory site defect in sarcoplasmic reticulum from malignant hyperthermia pig muscle. J Pharmacol Exp Therap 256:645–649.

    CAS  Google Scholar 

  64. Ohnishi ST. 1979. Calcium-induced calcium release from fragmented sarcoplasmic reticulum. J Biochem 86:1147–1150.

    PubMed  CAS  Google Scholar 

  65. Ohnishi ST. 1979. Interaction of metallochromic indicators with calcium sequestering organelles. Biochimica Et Biophysica Acta 585:315–319.

    Article  PubMed  CAS  Google Scholar 

  66. Ikemoto N, Antoniu B, Mészáros LG. 1985. Rapid flow chemical quench studies of calcium release from isolated sarcoplasmic reticulum. J Biol Chem 260:14096–14100.

    PubMed  CAS  Google Scholar 

  67. Abrenica B, Gilchrist JSC. 2000. Nucleoplasms calcium loading regulated by mobilization of perinuclear calcium. Cell-Calcium 28:127–136.

    Article  PubMed  CAS  Google Scholar 

  68. Chen W, Steenbergen C, Levy LA, Vance J, London RE, Murphy E. 1996. Measurement of free Ca2+ in sarcoplasmic reticulum in perfused rabbit heart loaded with 1,2-bis(2-amino-5,6-difluorophenoxy)ethane-N,N,N’,N’-tetraacetic acid by 19F NMR. J Biol Chem 271:7398–7403.

    Article  PubMed  CAS  Google Scholar 

  69. Shannon TR, Bers DM. 1997. Assessment of intra-SR free [Ca] and buffering in rat heart. Biophys J 73:1524–1531.

    Article  PubMed  CAS  Google Scholar 

  70. Saiki Y, Ikemoto N. 1997. Fluorescence probe study of the lumenal Ca2+ of the sarcoplasmic reticulum vesicles during Ca2+ uptake and Ca2+ release. Biochem Biophys Res Comm 241: 181–186.

    Article  PubMed  CAS  Google Scholar 

  71. Lukyanenko V, Györke I, Györke S. 1996. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflugers Archiv. European J Physiol 432:1047–1054.

    Article  CAS  Google Scholar 

  72. Györke I, Györke S. 1998. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J 75:2801–2810.

    Article  PubMed  Google Scholar 

  73. Dettbarn C, Gyorke S, Palade P. 1994. Many agonists induce “Quantal” Ca2+ release or adaptive behavior in muscle ryanodine receptors. Mol Pharmacol 46:502–507.

    PubMed  CAS  Google Scholar 

  74. Gyorke S, Fill M. 1993. Ryanodine receptor adaptation: control mechanism of Ca(2+)-induced Ca2+ release in heart [see comments]. Science 260:807–809.

    Article  PubMed  CAS  Google Scholar 

  75. Gyorke S. 1999. Ca2+ spark termination: inactivation and adaptation may be manifestations of the same mechanism [letter]. J Gen Physiol 114:163–166.

    Article  PubMed  CAS  Google Scholar 

  76. Jafri MS, Rice JJ, Winslow RL. 1998. Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load [published erratum appears in iophys 1998 Jun; 74(6):3313]. Biophys J 74:1149–1168.

    Article  PubMed  CAS  Google Scholar 

  77. Zahradnikova A, Zahradnik I. 1995. Description of modal gating of the cardiac calcium release channel in planar lipid membranes. Biophys J 69:1780–1788.

    Article  PubMed  CAS  Google Scholar 

  78. Valdivia HH, Kaplan JH, Ellis-Davies GC, Lederer WJ. 1995. Rapid adaptation of cardiac ryanodine receptors: modulation by Mg2+ and phosphorylation. Science 267:1997–2000.

    Article  PubMed  CAS  Google Scholar 

  79. Sachs F, Qin F, Palade P. 1995. Models of Ca2+ release channel adaptation [letter; comment]. Science 267:2010–2011.

    Article  PubMed  CAS  Google Scholar 

  80. Yasui K, Palade P, Gyorke S. 1994. Negative control mechanism with features of adaptation controls Ca2+ release in cardiac myocytes [see comments]. Biophys J 67:457–460.

    Article  PubMed  CAS  Google Scholar 

  81. Lamb GD, Stephenson DG. 1995. Activation of ryanodine receptors by flash photolysis of caged Ca2+. Biophys J 68:946–948.

    Article  PubMed  CAS  Google Scholar 

  82. Lamb GD. 1997. Ryanodine receptor “adaptation”: a flash in the pan? J Mus Res Cell Motil 18:611–616.

    Article  CAS  Google Scholar 

  83. Stern MD. 1996. “Adaptive” behavior of ligand-gated ion channels: constraints by thermodynamics. Biophys J 70:2100–2109.

    Article  PubMed  CAS  Google Scholar 

  84. Sham JS, Song LS, Chen Y, Deng LH, Stern MD, Lakatta EG, Cheng H. 1998. Termination of Ca2+ release by a local inactivation of ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci U S A 95:15096–15101.

    Article  PubMed  CAS  Google Scholar 

  85. Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukianov E, Grupp G, Bhagwhat A, Hoit B, Walsh R, Marban E, Periasamy M. 1998. Targeted overexpression of the sarcoplasmic reticulum Ca2+-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res 83:1205–1214.

    Article  PubMed  CAS  Google Scholar 

  86. Ji Y, Loukianov E, Loukianova T, Jones LR, Periasamy M. 1999. SERCA1a can functionally substitute for SERCA2a in the heart. Am J Physiol 276:H89–97.

    PubMed  CAS  Google Scholar 

  87. Matsui H, MacLennan DH, Alpert NR, Periasamy M. 1995. Sarcoplasmic reticulum gene expression in pressure overload-induced cardiac hypertrophy in rabbit. Am J Physiol 268:C252–258.

    PubMed  CAS  Google Scholar 

  88. Mészáros LG, Ikemoto N. 1985. Conformational changes of the Ca2+-ATPase as early events of Ca2+ release from sarcoplasmic reticulum. J Biol Chem 260:16076–16079.

    PubMed  Google Scholar 

  89. Mészáros LG, Ikemoto N. 1985. Ruthenium red and caffeine affect the Ca2+-ATPase of the sarcoplasmic reticulum. Biochem Biophys Res Comm 127:836–842.

    Article  PubMed  Google Scholar 

  90. Mészáros LG, Brown KL, Ikemoto N. 1987. 4′,6-Diamidino-2-phenylindole, a novel conformational probe of the sarcoplasmic reticulum Ca2+ pump, and its effect on Ca2+ release. J Biol Chem 262:11553–11558.

    PubMed  Google Scholar 

  91. Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN, Shull GE. 1999. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+-ATPase isoform 2 (SERCA2) gene. J Biol Chem 274:2556–2562.

    Article  PubMed  CAS  Google Scholar 

  92. Saiki Y, Ikemoto N. 1999. Coordination between Ca2+ release and subsequent re-uptake in the sarcoplasmic reticulum. Biochemistry 38:3112–3119.

    Article  PubMed  CAS  Google Scholar 

  93. Gilchrist JSC, Palahniuk C, Abrenica B, Cook T. 2002. RyR1/SERCA1 Cross-Talk Regulation of Calcium Transport in Heavy Sarcoplasmic Reticulum Vesicles. J Biol Chem (under revision).

    Google Scholar 

  94. Gilchrist JSC, Palahniuk C, Abrenica B, Cook T. 2002. Mag-Fura-2 and Chlorotetracycline Fluorescence Reveal Two Distinct HSR Luminal Calcium Pools. J Biol Chem (under revision).

    Google Scholar 

  95. Palahniuk CP, Abrenica B, CookT, Pierce GN, Gilchrist JSC. 2002. Thapsigargin and cyclopiazonic acid activate ryanodine-inhibitable RyR1 calcium release from heavy sarcoplasmic reticulum vesicles, under revision.

    Google Scholar 

  96. Palahniuk C, Gilchrist JSC. 1996. Thapsigarigin induces a rapid, ryanodine-inhibtable calcium release from skeletal muscle sarcoplasmic reiculum. Biophys J 70:A285.

    Google Scholar 

  97. Gould GW, McWhirter JM, East JM, Lee AG. 1987. A model for the uptake and release of Ca2+ by sarcoplasmic reticulum. Biochemical J 245:739–749.

    CAS  Google Scholar 

  98. Smith GL, Duncan AM, Neary P, Bruce L, Burton FL. 2000. P(i) inhibits the SR Ca(2+) pump and stimulates pump-mediated Ca(2+) leak in rabbit cardiac myocytes. Am J Physiol Heart Circ Physiol 279:H577–585.

    PubMed  CAS  Google Scholar 

  99. Favero TG, Abramson JJ. 1994. Thapsigargin-induced Ca2+ release from sarcoplasmic reticulum and asolectin vesicles. Cell-Calcium 15:183–189.

    Article  PubMed  CAS  Google Scholar 

  100. Dettbarn C, Palade P. 1998. Effects of three sarcoplasmic/endoplasmic reticulum Ca++ pump inhibitors on release channels of intracellular stores. J Pharmacol Exp Therap 285:739–745.

    CAS  Google Scholar 

  101. Kirby MS, Sagara Y, Gaa S, Inesi G, Lederer WJ, Rogers TB. 1992. Thapsigargin inhibits contraction and Ca2+ transient in cardiac cells by specific inhibition of the sarcoplasmic reticulum Ca2+ pump. J Biol Chem 267:12545–12551.

    PubMed  CAS  Google Scholar 

  102. Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP. 1990. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci USA 87:2466–2470.

    Article  PubMed  CAS  Google Scholar 

  103. Inesi G, Sagara Y. 1992. Thapsigargin, a high affinity and global inhibitor of intracellular Ca2+ transport ATPases. Arch Biochem Biophys 298:313–317.

    Article  PubMed  CAS  Google Scholar 

  104. Karon BS, Mahaney JE, Thomas DD. 1994. Halothane and cyclopiazonic acid modulate Ca-ATPase oligomeric state and function in sarcoplasmic reticulum. Biochemistry 33:13928–13937.

    Article  PubMed  CAS  Google Scholar 

  105. Sagara Y, Inesi G. 1991. Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 266:13503–13506.

    PubMed  CAS  Google Scholar 

  106. Sagara Y, Fernandez-Belda F, de Meis L, Inesi G. 1992. Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin. J Biol Chem 267:12606–12613.

    PubMed  CAS  Google Scholar 

  107. Sagara Y, Wade JB, Inesi G. 1992. A conformational mechanism for formation of a dead-end complex by the sarcoplasmic reticulum ATPase with thapsigargin. J Biol Chem 267:1286–1292.

    PubMed  CAS  Google Scholar 

  108. Thomas D, Hanley MR. 1994. Pharmacological tools for perturbing intracellular calcium storage. Meth Cell Biol 40:65–89.

    Article  CAS  Google Scholar 

  109. Nørregaard A, Vilsen B, Andersen JP. 1993. Chimeric Ca(2+)-ATPase/Na+,K(+)-ATPase molecules. Their phosphoenzyme intermediates and sensitivity to Ca2+ and thapsigargin. Febs Letters 336:248–254.

    Article  PubMed  Google Scholar 

  110. Davidson GA, Varhol RJ. 1995. Kinetics of thapsigargin-Ca(2+)-ATPase (sarcoplasmic reticulum) interaction reveals a two-step binding mechanism and picomolar inhibition. J Biol Chem 270:11731–11734.

    Article  PubMed  CAS  Google Scholar 

  111. Wictome M, Henderson I, Lee AG, East JM. 1992. Mechanism of inhibition of the calcium pump of sarcoplasmic reticulum by thapsigargin. Biochem-J 283:525–529.

    PubMed  CAS  Google Scholar 

  112. Kijima Y, Ogunbunmi E, Fleischer S. 1991. Drug action of thapsigargin on the Ca2+ pump protein of sarcoplasmic reticulum. J Biol Chem 266:22912–22918.

    PubMed  CAS  Google Scholar 

  113. Inesi G, de Meis L. 1989. Regulation of steady state filling in sarcoplasmic reticulum. Roles of back-inhibition, leakage, and slippage of the calcium pump. J Biol Chem 264:5929–5936.

    PubMed  CAS  Google Scholar 

  114. Favre CJ, Schrenzel J, Jacquet J, Lew DP, Krause KH. 1996. Highly supralinear feedback inhibition of Ca2+ uptake by the Ca2+ load of intracellular stores. J Biol Chem 271:14925–14930.

    Article  PubMed  CAS  Google Scholar 

  115. Shannon TR, Ginsburg KS, Bers DM. 2000. Reverse Mode of the Sarcoplasmic Reticulum Calcium Pump and Load-Dependent Cytosolic Calcium Decline in Voltage-Clamped Cardiac Ventricular Myocytes. Biophys J 78:322–333.

    Article  PubMed  CAS  Google Scholar 

  116. Bridge JH. 1986. Relationships between the sarcoplasmic reticulum and sarcolemmal calcium transport revealed by rapidly cooling rabbit ventricular muscle. J Gen Physiol 88:437–473.

    Article  PubMed  CAS  Google Scholar 

  117. Bers DM, Bassani RA, Bassani JW, Baudet S, Hryshko LV. 1993. Paradoxical twitch potentiation after rest in cardiac muscle: increased fractional release of SR calcium. J Mol Cell Cardiol 25: 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  118. Bassani RA, Bers DM. 1994. Na-Ca exchange is required for rest-decay but not for rest-potentiation of twitches in rabbit and rat ventricular myocytes. J Mol Cell Cardiol 26:1335–1347.

    Article  PubMed  CAS  Google Scholar 

  119. Banijamali HS, Gao WD, Macintosh BR, ter Keurs HE. 1991. Force-interval relations of twitches and cold contractures in rat cardiac trabeculae. Effect of ryanodine. Circ Res 69:937–948.

    Article  PubMed  CAS  Google Scholar 

  120. Cheng H, Lederer WJ, Cannell MB. 1993. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744.

    Article  PubMed  CAS  Google Scholar 

  121. Wang SQ, Song LS, Lakatta EG, Cheng H. 2001. Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410:592–596.

    Article  PubMed  CAS  Google Scholar 

  122. Lukyanenko V, Viatchenko-Karpinski S, Smirnov A, Wiesner TF, Gyorke S. 2001. Dynamic regulation of sarcoplasmic reticulum Ca(2+) content and release by luminal Ca(2+)-sensitive leak in rat ventricular myocytes. Biophys J 81:785–798.

    Article  PubMed  CAS  Google Scholar 

  123. Lukyanenko V, Subramanian S, Gyorke I, Wiesner TF, Gyorke S. 1999. The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes. J Physiol 518(Pt 1): 173–186.

    Article  PubMed  CAS  Google Scholar 

  124. Lukyanenko V, Gyorke I, Wiesner TF, Gyorke S. 2001. Potentiation of Ca(2+) release by cADP-ribose in the heart is mediated by enhanced SR Ca(2+) uptake into the sarcoplasmic reticulum. Circ Res 89:614–622.

    Article  PubMed  CAS  Google Scholar 

  125. Terentyev DA, Viatchenko-Karpinski S, Valdivia HH, Escobar A, Gyorke S. 2002. Luminal Ca Determines Termination of Cardiac Ca Sparks. Biophys J 82:511.

    Google Scholar 

  126. Chu A, Bick RJ, Tate CA, Van Winkle WB, Entman ML. 1983. Anion effects on in vitro sarcoplasmic reticulum function. Co-transport of anions with calcium. J Biol Chem 258:10543–10550.

    PubMed  CAS  Google Scholar 

  127. Chu A, Tate CA, Bick RJ, Van Winkle WB, Entman ML. 1983. Anion effects on in vitro sarcoplasmic reticulum function. The relationship between anions and calcium flux. J Biol Chem 258:1656–1664.

    PubMed  CAS  Google Scholar 

  128. Bridge JH, Ershler PR, Cannell MB. 1999. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes. J Physiol 518 (Pt 2):469–478.

    Article  PubMed  CAS  Google Scholar 

  129. Soeller C, Cannell MB. 2002. Estimation of the sarcoplasmic reticulum ca(2+) release flux underlying ca(2+) sparks. Biophys J 82:2396–2414.

    Article  PubMed  CAS  Google Scholar 

  130. Palade P, Mitchell RD, Fleischer S. 1983. Spontaneous calcium release from sarcoplasmic reticulum. General description and effects of calcium. J Biol Chem 258:8098–8107.

    PubMed  CAS  Google Scholar 

  131. Mitchell RD, Palade P, Fleischer S. 1984. Spontaneous calcium release from sarcoplasmic reticulum. Assessment of other ionic influences. J Biol Chem 259:1073–1081.

    PubMed  CAS  Google Scholar 

  132. Volpe P, Mrak RE, Costello B, Fleischer S. 1984. Calcium release from sarcoplasmic reticulum of normal and dystrophic mice. Biochimica et Biophysica Acta 769:67–78.

    Article  PubMed  CAS  Google Scholar 

  133. Volpe P, Palade P, Costello B, Mitchell RD, Fleischer S. 1983. Spontaneous calcium release from sarcoplasmic reticulum. Effect of local anesthetics. J Biol Chem 258:12434–12442.

    PubMed  CAS  Google Scholar 

  134. Rios E, Brum G. 2002. Ca2+ release flux underlying Ca2+ transients and Ca2+ sparks in skeletal muscle. Front Biosci 7:D1195–1211.

    Article  PubMed  CAS  Google Scholar 

  135. Gonzalez A, Zhou J, Kirsch W, Uttenweiler D, Fink R, Rios E, Brum E. 2002. Morphology of Ca2+ Sparks of Mammalian Muscle. Biophys J 82:510a.

    Google Scholar 

  136. Isaeva EV, Shirokova N. 2002. Metabolic Control of Local Calcium Signaling in Mammalian Skeletal Muscle. Biophys J 82:510a.

    Google Scholar 

  137. Yang Z, Steele DS. 2002. Effects of phosphocreatine on SR Ca(2+) regulation in isolated saponin-permeabilized rat cardiac myocytes. J Physiol 539:767–777.

    Article  PubMed  CAS  Google Scholar 

  138. Jayaraman T, Brillantes AM, Timerman AP, Fleischer S, Erdjument-Bromage H, Tempst P, Marks AR. 1992. FK506 binding protein associated with the calcium release channel (ryanodine receptor). J Biol Chem 267:9474–9477.

    PubMed  CAS  Google Scholar 

  139. Radermacher M, Wagenknecht T, Grassucci R, Frank J, Inui M, Chadwick C, Fleischer S. 1992. Cryo-EM of the native structure of the calcium release channel/ryanodine receptor from sarcoplasmic reticulum. Biophys J 61:936–940.

    Article  PubMed  CAS  Google Scholar 

  140. Saito A, Inui M, Radermacher M, Frank J, Fleischer S. 1988. Ultrastructure of the calcium release channel of sarcoplasmic reticulum. J Cell Biol 107:211–219.

    Article  PubMed  CAS  Google Scholar 

  141. Marks AR, Fleischer S, Tempst P. 1990. Surface topography analysis of the ryanodine receptor/ junctional channel complex based on proteolysis sensitivity mapping. J Biol Chem 265:13143–13149.

    PubMed  CAS  Google Scholar 

  142. Sharma MR, Penczek P, Grassucci R, Xin HB, Fleischer S, Wagenknecht T. 1998. Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J Biol Chem 273:18429–18434.

    Article  PubMed  CAS  Google Scholar 

  143. Qi Y, Ogunbunmi EM, Freund EA, Timerman AP, Fleischer S. 1998. FK-binding protein is associated with the ryanodine receptor of skeletal muscle in vertebrate animals. J Biol Chem 273:34813–34819.

    Article  PubMed  CAS  Google Scholar 

  144. Cameron AM, Steiner JP, Sabatini DM, Kaplin AI, Walensky LD, Snyder SH. 1995. Immunophilin FK506 binding protein associated with inositol 1,4,5-trisphosphate receptor modulates calcium flux. Proc Nad Acad Sci U S A 92:1784–1788.

    Article  CAS  Google Scholar 

  145. Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE, Marks AR. 1994. Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523.

    Article  PubMed  CAS  Google Scholar 

  146. Ondrias K, Marx SO, Gaburjakova M, Marks AR. 1998. FKBP12 modulates gating of the ryanodine receptor/calcium release channel. Ann NY Acad Sci 853:149–156.

    Article  PubMed  CAS  Google Scholar 

  147. O’Reilly FM, Robert M, Jona I, Szegedi C, Albrieux M, Geib S, De Waard M, Villaz M, Ronjat M. 2002. FKBP12 modulation of the binding of the skeletal ryanodine receptor onto the II–III loop of the dihydropyridine receptor. Biophys J 82:145–155.

    Article  PubMed  Google Scholar 

  148. Gaburjakova M, Gaburjakova J, Reiken S, Huang F, Marx SO, Rosemblit N, Marks AR. 2001. FKBP12 binding modulates ryanodine receptor channel gating. J Biol Chem 276:16931–16935.

    Article  PubMed  CAS  Google Scholar 

  149. Marx SO, Gaburjakova J, Gaburjakova M, Henrikson C, Ondrias K, Marks AR. 2001. Coupled gating between cardiac calcium release channels (ryanodine receptors). Circ Res 88:1151–1158.

    Article  PubMed  CAS  Google Scholar 

  150. Marx SO, Reiken S, Hisamatsu Y, Jayaraman T, Burkhoff D, Rosemblit N, Marks AR. 2000. PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101:365–376.

    Article  PubMed  CAS  Google Scholar 

  151. Doi M, Yano M, Kobayashi S, Kohno M, Tokuhisa T, Okuda S, Suetsugu M, Hisamatsu Y, Ohkusa T, Matsuzaki M. 2002. Propranolol prevents the development of heart failure by restoring FKBP12.6-mediated stabilization of ryanodine receptor. Circulation 105:1374–1379.

    Article  PubMed  CAS  Google Scholar 

  152. Dulhunty AF, Laver DR, Gallant EM, Casarotto MG, Pace SM, Curtis S. 1999. Activation and inhibition of skeletal RyR channels by a part of the skeletal DHPR II–III loop: effects of DHPR Ser687 and FKBP12. Biophys J 77:189–203.

    Article  PubMed  CAS  Google Scholar 

  153. Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S, Charng MJ, Mathews LM, Schneider MD, Hamilton SL, Matzuk MM. 1998. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391:489–492.

    Article  PubMed  CAS  Google Scholar 

  154. Xin HB, Senbonmatsu T, Cheng DS, Wang YX, Copello JA, Ji GJ, Collier ML, Deng KY, Jeyakumar LH, Magnuson MA, Inagami T, Kotlikoff MI, Fleischer S. 2002. Oestrogen protects FKBP12.6 null mice from cardiac hypertrophy. Nature 416:334–338.

    Article  PubMed  CAS  Google Scholar 

  155. Nelson MT, Herrera GM. 2002. Molecular physiology: protecting the heart. Nature 416:273–274.

    Article  PubMed  CAS  Google Scholar 

  156. Barg S, Copello JA, Fleischer S. 1997. Different interactions of cardiac and skeletal muscle ryanodine receptors with FK-506 binding protein isoforms. Am J Physiol 272:C1726–1733.

    PubMed  CAS  Google Scholar 

  157. Timerman AP, Onoue H, Xin HB, Barg S, Copello J, Wiederrecht G, Fleischer S. 1996. Selective binding of FKBP12.6 by the cardiac ryanodine receptor. J Biol Chem 271:20385–20391.

    Article  PubMed  CAS  Google Scholar 

  158. Presde J, Janssen PM, Janssen AP, Zeitz O, Lehnart SE, Bruce L, Smith GL, Hasenfuss G. 2001. Overexpression of FK506-binding protein FKBP12.6 in cardiomyocytes reduces ryanodine receptor-mediated Ca(2+) leak from the sarcoplasmic reticulum and increases contractility. Circ Res 88:188–194.

    Article  Google Scholar 

  159. Valdivia HH. 2001. Cardiac ryanodine receptors and accessory proteins: augmented expression does not necessarily mean big function. Circ Res 88:134–136.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Gilchrist PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rampersad, P., Mutawe, M., Abrenica, B., Cook, T., Gilchrist, J. (2004). Functional Significance of Ryanodine Receptor-Mediated Calcium Leaks in Sarcoplasmic Reticulum Membranes. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics