Skip to main content

Preconditioning and Myocardial Angiogenesis

  • Chapter
  • 297 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 10))

Summary

In the Western World ischemic coronary disease is the leading cause of morbidity and mortality. Therapeutic approaches mostly aim to restore flow to a localized segment by angioplasty or bypass surgery. In order to develop better and more effective therapeutic strategies using the powerful concept of inducing new vessel growth or by employing vascular growth factors, it is essential to further our understanding of the molecular mechanisms and the chain of events underlying the fascinating process of angiogenesis. Among the various triggers of angiogenesis, tissue hypoxia/ischemia has been identified as being a particularly important stimulus for the induction of new vessel growth. Occlusion of a main coronary depletes the blood supply to the myocardium and subsequently reduces cardiac function, which ultimately leads to heart failure. Progressive, chronic coronary artery occlusion has been shown to induce development of collateral arteries to reestablish and maintain blood flow to the myocardium at risk via the growth of new capillary vessels or angiogenesis. Studies from our laboratory as well as from others have already confirmed the protective role of collaterals against myocardial ischemia and cell death. We have successfully demonstrated in adult rat myocardium (LV) effects of hypoxia/reoxygenation on significant upregulation of the protein expression profiles of vascular endothelial growth factor (VEGF) and its tyrosine kinase receptors (Flk-1 and Flt-1) as well as other angiogenic factors such as Ang-1, Ang-2 and their receptor Tie-2. Also, we were able to demonstrate increased capillary/arteriolar density, increased capillary to myocyte cross-sectional area (after 1–4 weeks and after 2 months) and decreased collagen volume fraction by hypoxic/ischemic preconditioning in a rat model of chronic myocardial infarction (MI) model.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shizukuda Y, Iwamoto T, Mallet RT, Downey HP 1993. Hypoxic preconditioning attenuates stunning caused by repeated coronary artery occlusions in dog heart. Cardiovasc Res 27:559–564.

    Article  PubMed  CAS  Google Scholar 

  2. Lasley RD, Anderson CM, Mentzer RM. 1993. Ischemic and hypoxic preconditioning enhance postischemic recovery of function in the rat heart. Cardiovasc Res 27:565–570.

    Article  PubMed  CAS  Google Scholar 

  3. Zhai X, Lawson CS, Cave AC, Hearse DJ. 1993. Preconditioning and postischemic contractile dysfunction: the role of impaired oxygen delivery vs, extracellular metabolite accumulation. J Mol Cell Cardiol 25:847–857.

    Article  PubMed  CAS  Google Scholar 

  4. Ashraf M, Suleiman J, Ahmad M. 1994. Ca2+ preconditioning elicits a unique protection against the ca2+ paradox injury in rat heart. Circ Res 74:360–367.

    Article  PubMed  CAS  Google Scholar 

  5. Thornton JD, Liu GS, Olsson RA, Downey JM. 1992. Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 85:659–665.

    Article  PubMed  CAS  Google Scholar 

  6. Banerjee A, Locke-Winter C, Rogers KB, Mitchell MB, Brew EC, Cairns CB, Bensard DD, Harken AH. 1993. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an A1-adrenergic mechanism. Circ Res 73:656–670.

    Article  PubMed  CAS  Google Scholar 

  7. Thornton JD, Downey JM. 1993. Pretreatment with pertussis toxin blocks the protective effects of preconditioning: evidence for a Gi-protein mechanism. J Mol Cell Cardiol 25:311–320.

    Article  PubMed  CAS  Google Scholar 

  8. Ovize M, Kloner RA, Przvklenk K. 1994. Stretch preconditions canine myocardium. AM J Physiol 266(1 Pt 2):H137–H146.

    PubMed  CAS  Google Scholar 

  9. Neely JR, Grotyohann LW. 1984. Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic hearts. Circ Res 55:816–824.

    Article  PubMed  CAS  Google Scholar 

  10. Engelman DT, Watanabe M, Engelman RM, Rousou JA, Kisin E, Kagan VE, Maulik N, Das DK. 1995. Hypoxic preconditioning preserves antioxidant reserve in the working rat heart. Cardiovas Res 29:133–140.

    CAS  Google Scholar 

  11. Mauhk N, Watanabe M, Zu Y-L, Huang C-K, Cordis GA, Schely JA, Das DK. 1996. Ischemic preconditioning triggers the activation of MAP kinases and MAPKAP kinase 2 in rat hearts. FEBS Lett 396:233–237, 396.

    Google Scholar 

  12. Maulik N, Yoshida T, Zu Y-L, Sato M, Banerjee A, Das DK. 1998. Ischemic preconditioning triggers tyrosine kinase signaling: a potential role for MAPKAP kinase 2. Am J Physiol 275(44): H1857–H1864.

    PubMed  CAS  Google Scholar 

  13. Risau W, Ekblom P. 1986. Growth factors and the embrynic kidney. In Serino D (ed): “Progress in clinical and Biological Research. Hormonal Control of Embryonic and cellular differentiation.” New York: Liss, pp. 221–232.

    Google Scholar 

  14. Angus J A, Ward JE, Smolich JJ, McPherson GA. 1991. Reactivity of canine isolated epicardial collateral coronary arteries. Circ Res 69:1340–1352.

    Article  PubMed  CAS  Google Scholar 

  15. Iruela-Arise ML, Diglio CA, Sage EH. 1991. Modulation of extracellular matrix proteins by endothelial cells undergoing angiogenesis in vitro. Artenoscl Thromb 11:805–815.

    Article  Google Scholar 

  16. Cohen MV, Yang X-M, Neumann T, Heusch G, Downey JM. 2000. Favorable remodeling enhances recovery of regional myocardial function in the weeks after infarction in ischemically preconditioned hearts. Circulation 102:579.

    Article  PubMed  CAS  Google Scholar 

  17. Murry N, Jennings RB, Reimer KA. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  18. Das DK, Moraru II, Maulik N, Engelman R. 1994. Gene expression during myocardial adaptation to ischemia and reperfusion. Ann NY Acad Sci 723:292–307.

    Article  PubMed  CAS  Google Scholar 

  19. Epstein S, Williams DO, Amsterdam EA, Miller RR. 1988. Functional significance of coronary collateral vessels in patients with acute myocardial infarction: Relation to pump performance, cardio-genic shock and survival. Am J Cardiol 61:345–351.

    Article  Google Scholar 

  20. Maruyama K, Mori Y, Murasawa S, Masaki H, Takahashi N, Tsutusmi Y, Moriguchi Y, Shibazaki Y, Tanaka Y, Shibuya M, Inada M, Matsubara H, Iwasaka T. 1999. Interleukin-1 beta upregulates cardiac expression of vascular endothelial growth factor and its receptors KDA/FLK-1 via activation of protein tyrosine kinases. J Mol Cell Cardiol 31:607–617.

    Article  PubMed  CAS  Google Scholar 

  21. Nor JE, Christensen J, Mooney DJ, Polverini PJ. 1999. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am J Pathol 154:375–384.

    Article  PubMed  CAS  Google Scholar 

  22. Maulik N, Watanabe D, Engelman D, Engelman RM, Das DK. 1995. Oxidative stress adaptation improves postischemic ventricular recovery. Mol Cell Biochem 144:67–74.

    Article  PubMed  CAS  Google Scholar 

  23. Liu TN, Nian GM, Chen SE, Cheung WM, Chang C, Lin WC, Hsu CY 2001. Induction of Tie-1 and Tie-2 receptor protein expression after cerebral ischemia-reperfusion. J Cerebral Blood flow and Metabolism 21:690–701.

    Google Scholar 

  24. Brand T, Sharma HS, Fleischmann KE, Duncker DJ, McFalls EO, Verdue PD, Schaper W. 1992. Protooncogene expression in porcine myocardium subjected to ischemia and reperfusion. Circ Res 71:1351–1360.

    Article  PubMed  CAS  Google Scholar 

  25. Ely SW, Berne RM. 1992. Protective effects of adenosine in myocardial ischemia. Circulation 85:893–904.

    Article  PubMed  CAS  Google Scholar 

  26. Fukuda S, Zhu Li, Engelman RM, Das DK, Maulik N. 2001. Ischemic preconditioning (PC) triggers myocardial angiogenesis by upregulating vascular endothelial growth factor (VEGF). Surgical Forum LII:65–67.

    Google Scholar 

  27. Senger DR, Connolly DT, L Van de W, Feder J, Dvorak HE 1990. Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 50:1774–1778.

    PubMed  CAS  Google Scholar 

  28. Fong G-H, Rossant J, Gerstenstein M, Breitman ML. 1995. Role of the Flt-1 receptor tyrosine kinase in regulating the assambly of vascular endothelium. Nature 376:66–70.

    Article  PubMed  CAS  Google Scholar 

  29. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ. 1994. Therapeutic angiogenesis. A single intra arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670.

    Article  PubMed  CAS  Google Scholar 

  30. Ray PS, Estrada-Hernandez T, Sasaki H, Zhu Li, Maulik N. 2000. Early effects of hypoxia/ reoxygenation on VEGF, Ang-1, Ang-2 and their receptors in the rat myocardium: Implications for myocardial angiogenesis. Mol Cell Biochem 213:145–153.

    Article  PubMed  CAS  Google Scholar 

  31. Sasaki H, Fukuda S, Otani H, Zhu Li, Yamaura G, Engelman RM, Das DK, Maulik N. 2002. Hypoxic preconditioning triggers myocardial angiogenesis: a novel approach to enhance contractile function reserve in rat with myocardial infarction. J Mol Cell Cardiol 34:335–348.

    Article  PubMed  CAS  Google Scholar 

  32. Shizukuda Y, Iwamoto T, Mallet RT, Downey HE 1993. Hypoxic preconditioning attenuates stunning caused by repeated coronary artery occlusion in dog heart. Cardiovascular Res 27:559–5564.

    Article  CAS  Google Scholar 

  33. Das DK. 1993. Ischemic preconditioning and myocardial adaptation to ischemia. Cardiovasc Res 27:2077–2079.

    Article  PubMed  CAS  Google Scholar 

  34. Gerber H-P, Dixit V, Ferrara N. 1998. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J Biol Chem 273:13313–13316.

    Article  PubMed  CAS  Google Scholar 

  35. Meeson A, Palmer M, Calfon M, Lang R. 1996. A relationship between apoptosis and flow during programmed capillary regression is revealed by vital analysis. Develop 122:3929–3938.

    CAS  Google Scholar 

  36. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. 1995. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematuarity. Nat Med 1:1024–1028.

    Article  PubMed  CAS  Google Scholar 

  37. Shweiki D, Itin A, Soffer C, Keshet E. 1992. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845.

    Article  PubMed  CAS  Google Scholar 

  38. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ. 1994. Therapeutic angiogenesis. A single intra arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hind limb model. J Clin Invest 93:662–670.

    Article  PubMed  CAS  Google Scholar 

  39. Asahara T, Chen D, Takahashi T, Fujikawa K, Kearney M, Magner M, Yancopoulos GD, Isner JM. 1998. Tie-2 receptor ligands, angiopoietin-1 and angiopoietin-2, modulate VEGF-induced postnatal neovascularization. Circ Res 83:342–343.

    Article  Google Scholar 

  40. Isner JM, Pieczek A, Schainfed R, Blair R, Haley L, Asahara T, Rosenfield K, Razvi S, Walsh K, Symes J. 1996. Clinical evidence of angiogenesis is after arterial gene transfer of ph VEGF165 in patient with ischemic limb. Lancet 348:370–374.

    Article  PubMed  CAS  Google Scholar 

  41. Rousseau S, Houle F, Landry J, Hout J. 1997. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15:2169–2177.

    Article  PubMed  CAS  Google Scholar 

  42. Tomanek RJ, Ratajska A, Kitten GT, Yue X, Sandra A. 1999. Vascular endothelial growth factor expression coincides with coronary vasculogenesis and angiogenesis. Dev Dyn 215:54–61.

    Article  PubMed  CAS  Google Scholar 

  43. Houck KA, Ferrara N, Winer J, Cachianes G, Li B, Leung DW. 1991. The vascular endothelial growth factor family: identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol 5:1806–1814.

    Article  PubMed  CAS  Google Scholar 

  44. Minchenko A, Bauer T, Salceda S, Caro J. 1994. Hypoxic stimulation of vascular endothelial growth factor expression in vivo and in vitro. Lab Invest 71:374–379.

    PubMed  CAS  Google Scholar 

  45. Hasimoto E, Ogita T, Nakaoka T, Matsuoka R, Takao A, Kira Y. 1994. Rapid induction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am J Physiol 267: H1948–H1954.

    Google Scholar 

  46. Neufeld G, Cohen T, Gengnnovitch S, Poltorak Z. 1999. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22.

    PubMed  CAS  Google Scholar 

  47. Ferrara N, Davis-Smyth T. 1997. The biology of vascular endothelial growth factor. Endocr Rev 18:4–25.

    Article  PubMed  CAS  Google Scholar 

  48. Ferrara N. 1999. Vascular endothelial growth factor: molecular and biological aspects. Curr Top Microbiol Immunol 237:1–30.

    Article  PubMed  CAS  Google Scholar 

  49. Spyridopoulos I, Brogi E, Kearney M, Sullivan AB, Cetrulo C, Isner JM, Losardo DW. 1997. Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor alpha balance between growth and death signals. J Mol Cell Cardiol 29:1321–1330.

    Article  PubMed  CAS  Google Scholar 

  50. DeVnes C, Escobedo JA, Veno H, Houck K, Ferrara N, Williams LT. 1992. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255:989–991.

    Article  Google Scholar 

  51. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A. 1994. Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579.

    Article  PubMed  CAS  Google Scholar 

  52. Witzenbichler B, Maisonpierre PC, Jones P, Yancopoulos GD, Isner JM. 1998. Chemotactic properties of angiopoietin-1 and-2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem 273:18514–18521.

    Article  PubMed  CAS  Google Scholar 

  53. Kuo N, Benhayon D, Przybylski RJ, Martin RJ, LaManna JC. 1999. Prolonged hypoxia increases vascular endothelial growth factor mRNA and protein in adult mouse brain. J Appl Physio l 86:260–264.

    Google Scholar 

  54. Banai S, Shweiki D, Pinson A, Chandra M, Lazarovici G, Keshet E. 1994. Upregulation of vascular endothelial growth factor expression induced by myocardial ischemia: implications for coronary angiogenesis. Cardiovasc Res 28:1176–1179.

    Article  PubMed  CAS  Google Scholar 

  55. Maxwell PH, Pugh CW, Ratcliffe PJ. 1993. Inducible operation of the erythropoitin 3′ enhancer in multiple cell lines: evidence for a widespread oxvgen—sensing mechanism. PNAS 90: 2423–2427.

    Article  PubMed  CAS  Google Scholar 

  56. Bandyopadhyay RS, Phelan M, Faller DV. 1995. Hypoxia induces AP-1 regulated genes and AP-1 transcription factor binding in human endothelial and other cell types. Biochem Biophys 1264: 72–78.

    Article  Google Scholar 

  57. Yao KS, Xanthoudakis S, Curran T, O’Dwyer PJ. 1995. Involvement of NFκB in the induction of NAD(P)H quinone oxidoreductase by hvpoxia, oltipraz and mitomycin C. Biochem Pharmacol 49:275–282.

    Article  PubMed  CAS  Google Scholar 

  58. Yoshida A, Yoshida S, Ishibashi T, Kuwano M, Inomata H. 1999. Suppression of retinal neovascular-ization by the NF-κB inhibitor pyrrolidine dithiocarbamate in mice. Invest Ophthalmol Vis Sci 40:162–1629.

    Google Scholar 

  59. Lelkes PI, Hahn KL, Sukovich DA, Karmiol S, Schmidt DH. 1998. On the possible role of reactive oxygen species in angiogenesis. Adv Exp Med Biol 454:295–310.

    Article  PubMed  CAS  Google Scholar 

  60. Yoshida A, Yoshida S, Khalil AK, Ishibashi T, Inomata H. 1998. Role of NF-κB mediated mterleukin-8 expression in intraocular neovascularization. Invest Ophthalmol Vis Sci 39:1097–1106.

    PubMed  CAS  Google Scholar 

  61. Smeal T, Angel P, Meek J, Karin M. 1989. Different requirements for formation of Jun-Jun and Jun-Fos complexes. Genes Dev 3:2091–2100.

    Article  PubMed  CAS  Google Scholar 

  62. Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC, Abraham JA. 1991. The human gene for vascular endothelial growth factor. Multiple protein forms are encoded through alternative exon slicing. J Biol Chem 266:11947–11954.

    PubMed  CAS  Google Scholar 

  63. Ryuto M, Ono M, Izumi H, Yoshida S, Weich HA, Kohno K, Kuwano M. 1996. Induction of vascular endothelial growth factor by tumor necrosis factor a in human glioma cells. J Biol Chem 271:28220–28228.

    Article  PubMed  CAS  Google Scholar 

  64. Shono T, Ono M, Izumi H, Jimi Sci-Ichiro, Matsushima K, Okamoto T, Kohno K, Kuwano M. 1996. Involvement of the transcription factor NF-κB in tubular morphogenesis of human microvascular endothelial cells by oxidative stress. Mol Cell Biol 16:4231–4239.

    PubMed  CAS  Google Scholar 

  65. Higgins K, Perez JR, Colman TA, Dorshkind K, McComas WA, Sarmiento UM, Rosen CA, Narayanan R. 1993. Antisense inhibition of the p65 subunit of NFκB blocks tumorigenicity and causes tumor regression. Proc Natl Acad Sci USA 90:9901–9905.

    Article  PubMed  CAS  Google Scholar 

  66. Sasaki H, Ray PS, Zhu Li, Hajime O, Takayuki A, Maulik N. 2001. Hypoxia/Reoxygenation promotes myocardial angiogenesis via an NF-κB-dependent mechanism in a rat model of chronic myocardial infarction. J Mol Cell Cardiol 33:283–294.

    Article  PubMed  CAS  Google Scholar 

  67. Lelkes PI, Hahn KA, Karmiol S, Schmidt DH. 1998. Hypoxia/reoxygenation enhances tube formation of cultured human micro-vascular endothelial cells: the role of reactive oxygen species. In: ME Maragoudakis, ed. Angiogenesis: Models, Modulators, and Clinical Applications. New York: Plenum Press, pp. 321–336.

    Google Scholar 

  68. Stoltz KA, Abraham NG, Laniado-Schwartzman ML. 1996. The role of NFκB in the angiogenenic response of coronary microvessel endothelial cells. Proc Natl Acad Sci 93:2832–2837.

    Article  PubMed  CAS  Google Scholar 

  69. Maulik N, Engelman DT, Watanabe M, Engelman RM, Rousou JA, Flack JE, Deaton DW, Gorbunov NV, Elsayed NM, Kagan VE, Das DK. 1996. Nitric oxide/Carbon monoxide: A molecular switch for myocardial preservation during ischemia. Circulation 94:II-398–II-406.

    CAS  Google Scholar 

  70. Ziche M, Morbidelli L, Masini E, Amerini S, Granger HJ, Maggi CA, Geppetti P, Ledda F. 1994. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. J Clin Invest 94:2036–2044.

    Article  PubMed  CAS  Google Scholar 

  71. Chin K, Kurashima Y, Ogura T, Tajiri H, Yoshida S, Esumi H. 1997. Induction of vascular endothelial growth factor by nitric oxide in human glioblastoma and hepatocellular carcinoma cells. Oncogene 15:437–442.

    Article  PubMed  CAS  Google Scholar 

  72. Tsurumi Y, Murohara T, Krasinski K, Chen D, Witzenbichler B, Kearney M, Couffinhal T, Isner JM. 1997. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med 3:879–886.

    Article  PubMed  CAS  Google Scholar 

  73. Leibovich SJ, Polverini PJ, Fong TW, Harlow LA, Koch A. 1994. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc Natl Acad Sci USA 91: 4190–4194.

    Article  PubMed  CAS  Google Scholar 

  74. Gallo O, Masini E, Morbidelli L, Franchi A, Finistorchi I,Vergari WA, Ziche M. 1998. Role of nitric oxide in angiogenesis and tumor progression in head and neck cancer. J Natl Cancer Inst 90:587–596.

    Article  PubMed  CAS  Google Scholar 

  75. Pipili-Synetos E, Sakkoula E, Haralabopoulos G, Andriopoulou P, Peristeris P, Maragoudakis ME. 1994. Evidence that nitric oxide is an endogenous antiangiogenic mediator. Br J Pharmacol 111:894–902.

    Article  PubMed  CAS  Google Scholar 

  76. Pipili-Synetos E, Papa Georglou A, Sakkoula E, Sotiropoulou G, Fotsis T, Karakiulakis G, Maragoudakis ME. 1995. Inhibition of angiogenesis, tumour growth and metastasis by the NO-releasing vasodilators, isosorbide mononitrate and dinitrate. Br J Pharmacol 116:1829–1834.

    Article  PubMed  CAS  Google Scholar 

  77. Tsurumi Y, Murohara T, Krasinski K, Chen D, Witzenbichler B, Kearney M, Couffinhal T, Isner JM. 1997. Reciprocal relation between VEGF and NO in the regulation of endothelial integrity. Nat Med 3:879–886.

    Article  PubMed  CAS  Google Scholar 

  78. Tuder RM, Voelkel NF, Flook BE. 1995. Increased gene expression for VEGF and the VEGF receptors KDR/Flk and Fit in lungs exposed to acute or to chronic hypoxia. Modulation of gene expression by nitric oxide. J Clin Invest 95:1798–1807.

    Article  PubMed  CAS  Google Scholar 

  79. Von der Leyen HE, Gibbons GH, Morishita R, Lewis NP, Zhang L, Nakajima M, Kaneda Y, Cooke JP, Dzau VJ. 1995. Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci USA 92:1137–1141.

    Article  PubMed  Google Scholar 

  80. Tzeng E, Shears LL, Robbins PD, Pitt Br, Geller DA, Watkins SC, Simmons RI, Billiar TR. 1996. Vascular gene transfer of the human inducible nitric oxide synthase characterization of activity and effects of myointimal hyperplasia. Mol Med 2:211–225.

    PubMed  CAS  Google Scholar 

  81. Schwarzacher S, Lim TT, Wang BY, Kernoff RS, Niebauer J, Cooke JP, Yeung AC. 1997. Local intramural delivery of L-arginine enhances nitric oxide generation and inhibits lesion formation after vascular injury. Circulation 95:1863–1869.

    Article  PubMed  CAS  Google Scholar 

  82. Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S. 1995. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci USA 92: 4392–4396.

    Article  PubMed  CAS  Google Scholar 

  83. Van der Zee R, Murohara T, Luo Z, Zollmann F, Passeri J, Lekutat C, Isner JM. 1997. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium. Circulation 95:1030–1037.

    Article  PubMed  Google Scholar 

  84. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. 1997. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 100:3131–3139.

    Article  PubMed  CAS  Google Scholar 

  85. Sase K, Michel T. 1997. Expression and regulation of endothelial nitric oxide synthase. Trends Cardiovasc Med 7:28–37.

    Article  PubMed  CAS  Google Scholar 

  86. Waltenberger J, Claesson-Welsh L, Siegbahn A, Shibuya M, Heldin CH. 1994. Different signal transduction properties of KDR and Fit-1, two receptors for vascular endothelial growth factor. J Biol Chem 269:26988–26995.

    PubMed  CAS  Google Scholar 

  87. Bussolati B, Dunk C, Mason M, Kontos CD, Ahmed A. 2001. Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor mediated angiogenesis via nitric oxide. Am J Pathol 159:993–1008.

    Article  PubMed  CAS  Google Scholar 

  88. Seymour LW, Shoaibi MA, Martin A, Ahmed A, Elvin P, Kerr DJ, Wakelam MJO. 1996. Vascular endothelial growth factor stimulates protein kinase C-dependent phospholipase D activity in endothelial cells. Lab Invest 75:427–437.

    PubMed  CAS  Google Scholar 

  89. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA. 1992. Definition of two angiogenic pathways by distinct α v integrins. Science 270:607–614.

    Google Scholar 

  90. Spyridopoulos I, Brogi E, Kearney M, Sullivan AB, Cetrulo C, Isner JM, Losardo DW. 1997. Vascular endothelial growth factor inhibits endothelial cell apoptosis induced by tumor necrosis factor-alpha: balance between growth and death signals. J Mol Cell Cardiol 29:1321–1330.

    Article  PubMed  CAS  Google Scholar 

  91. Watanabe Y, Dvorak HE 1997. Vascular permeability factor/vascular endothelial growth factor inhibits anchorage disruption induced apoptosis in microvessel endothelial cells by inducing scaffold formation. Exp Cell Res 233:340–349.

    Article  PubMed  CAS  Google Scholar 

  92. Gerber H-P, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N. 1998. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3′-kinase/AKT signal transduction pathway. J Biol Chem 273:30336–30343.

    Article  PubMed  CAS  Google Scholar 

  93. Papapetropoulos A, Fulton D, Mahboubi K, Kalb RG, O’Connor DS, Li F, Alrien DC, Sessa WC. 2000. Angiopoietin-1 inhibits endothelial cell apoptosis via the AKT/survivin pathway. J Biol Chem 275:9102–9105.

    Article  PubMed  CAS  Google Scholar 

  94. Li Zhu, Fukuda S, Cordis G, Das DK, Maulik N. 2001. Anti-apoptotic survivin plays a significant role in tubular morphogenesis of human coronary arteriolar endothelial cells by hypoxic preconditioning. FEBS Lett 508:369–374.

    Article  Google Scholar 

  95. Ito T, Shirak IK, Sugimoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano T, Suzuki A. 2000. Survivin promotes cell proliferation in human hepatocellular carcinoma. Hapatology 31:1080–1085.

    Article  CAS  Google Scholar 

  96. O’Connor DS, Schechner JS, Adida C, Mesn M, Rothermel AL, Li F, Nath AK, Pober JS, Altien DC. 2000. Control of apoptosis during angiogenesis by survivin expression in endothelial cells. Am J Pathol 156:393–398.

    Article  PubMed  Google Scholar 

  97. Adams JM, Cory S. 1998. The Bcl-2 Protein Family: Arbiters of cell survival. Science 281:1322–1326.

    Article  PubMed  CAS  Google Scholar 

  98. Deveraux QL, Reed JC. 1999. IAP family proteins-suppressors of apoptosis. Genes Dev 13:239–252.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilanjana Maulik Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maulik, N. (2004). Preconditioning and Myocardial Angiogenesis. In: Dhalla, N.S., Rupp, H., Angel, A., Pierce, G.N. (eds) Pathophysiology of Cardiovascular Disease. Progress in Experimental Cardiology, vol 10. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0453-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0453-5_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5084-2

  • Online ISBN: 978-1-4615-0453-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics