Molecular Genetics of Kidney Cancer

  • Michael Zimmer
  • Othon Iliopoulos
Part of the Cancer Treatment and Research book series (CTAR, volume 116)


Tumorigenesis is a multistep process of genetic and epigenetic changes that occur in an orderly fashion The order of these changes may navigate through different steps in cancers arising from different organs/tissues. It is likely though that the final outcome is the sequential deregulation of a few key pathways of normal cell growth, namely: inactivation of tumor suppressor genes; activation of oncogenes; evasion of apoptotic cell program; and ultimately induction of angiogenesis and metastasis.’ Entry points to these genetic alterations were discovered by cloning genes disrupted by tumor-associated chromosomal translocations, harbored in cancer-associated homozygous deletions or underlying familial cancer syndromes.


Hypoxia Inducible Factor Tuberous Sclerosis Tuberous Sclerosis Complex Papillary Renal Cell Carcinoma Tuberous Sclerosis Complex Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hanahan, D, and RA Weinberg. 2000. The Hallmarks of Cancer. Cell 100:57–70.CrossRefPubMedGoogle Scholar
  2. 2.
    Reuter, VE, and JC Presti. 2000. Contemporary approach to the classification of renal epithelial tumors. Seminars in Oncology 27:124–137.PubMedGoogle Scholar
  3. 3.
    Maher, ER, JRW Yates, R Harries, C Benjamin, R Harris, AT Moore, and MA Ferguson-Smith. 1990. Clinical features and natural history of von Hippel-Lindau Disease. Quarterly Journal of Medicine 77:1151–1163.CrossRefPubMedGoogle Scholar
  4. 4.
    Melmon, K, and S Rosen. 1964. Lindau’s disease. Am J Med 36:595–617.CrossRefPubMedGoogle Scholar
  5. 5.
    Latif, F, K Tory, J Gnarra, M Yao, F-M Duh, ML Orcutt, T Stackhouse, I Kuzmin, W Modi, L Geil, L Schmidt, F Zhou, H Li, MH Wei, F Chen, G Glenn, P Choyke, MM Walther, Y Weng, D-SR Duan, M Dean, D Glavac, FM Richards, PA Crossey, MA Ferguson-Smith, DL Pasiler, I Chumakov, D Cohen, AC Chinault, ER Maher, WM Linehan, B Zbar, and MI Lerman. 1993. Identification of the von Hippel-Lindau Disease Tumor Suppressor Gene. Science 260:1317–1320.CrossRefPubMedGoogle Scholar
  6. 6.
    Lamiell, J, F Salazar, and Y Hsia. 1989. von Hippel-Lindau disease affecting 43 members of a single kindred. Medicine 68:1–29.CrossRefPubMedGoogle Scholar
  7. 7.
    Wizigmann-Voos, S, and KH Plate. 1996. Pathology, genetics and cell biology of hemangioblastomas. Histol Histopathol 11:1049–1061.PubMedGoogle Scholar
  8. 8.
    Richard, S, C Campello, L Taillandier, F Parker, and F Resche. 1998. Hemangioblastoma of the central nervous system in von Hippel-Lindau disease. J Intern Med 243:547–553.CrossRefPubMedGoogle Scholar
  9. 9.
    Sharma, RR, IP Cast, and C O’Brien. 1995. Supratentorial haemangioblastoma not associated with Von Hippel Lindau complex or polycythaemia: case report and literature review. Br J Neurosurg 9:81–84.CrossRefPubMedGoogle Scholar
  10. 10.
    Wittebol-Post, D, FJ Hes, and CJM Lips. 1998. The eye in von Hippel-Lindau disease. Long term follow up of screening and treatment recommendations. J Intern Med 243:555–561.CrossRefPubMedGoogle Scholar
  11. 11.
    Neumann, HPH, and B Zbar. 1997. Renal cysts, renal cancer and Von Hippel-Lindau disease. Kidney Int 51:16–26.CrossRefPubMedGoogle Scholar
  12. 12.
    Maher, EWA, and A Moore. 1995. Clinical and molecular genetics of von Hippel-Lindau disease. Ophthalmic Genetics 16:79–84.CrossRefPubMedGoogle Scholar
  13. 13.
    McClellan, MW, P Choyke, G Weiss, C Manolatos, J Long, R Reiter, RB Alexander, and WM Linehan. 1995. Parenchymal sparing surgery in patients with hereditary renal cell carcinoma. J Urol 153:913–916.CrossRefGoogle Scholar
  14. 14.
    Zbar, B, W Kaelin, E Maher, and S Richard. 1999. Third International Meeting on von HippelLindau disease. Cancer Res 59:2251–2253.PubMedGoogle Scholar
  15. 15.
    Neumann, PH, S Hoegerle, T Manz, K Brenner, and 0 Iliopoulos. 2002. How many pathways to pheochromocytoma? Seminars in Nephrology 22:89–99.CrossRefPubMedGoogle Scholar
  16. 16.
    Neumann, HPH, DP Berger, G Sigmund, U Blum, D Schmidt, RJ Parmer, B Volk, and G Kirste. 1993. Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel-Landau Disease. N Engl J Med 329:1531–1538.CrossRefPubMedGoogle Scholar
  17. 17.
    Eisenhofer, G, JW Lenders, WM Linehan, MM Walther, DS Goldstein, and HR Keiser. 1999. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med 340:1872–1879.CrossRefPubMedGoogle Scholar
  18. 18.
    Choyke, PL, GM Glenn, MM Walther, NJ Patrons, WM Linehan, and B Zbar. 1995. von HippelLindau disease: genetic, clinical and imaging features. Radiology 194:629–642.PubMedGoogle Scholar
  19. 19.
    Neumann, HP, E Dinkel, H Brambs, B Wimmer, H Friedburg, B Volk, G Sigmund, P Riegler, K Haag, and SP 1991. Pancreatic lesions in the von Hippel-Lindau syndrome. Gastrenterology 101:465–471.Google Scholar
  20. 20.
    Humphrey, JS, RD Klausner, and WM Linehan. 1996. Von Hippel-Lindau syndrome: hereditary cancer arising from inherited mutations of the VHL tumor suppressor gene. Cancer Treat Res 1996 88:13–39.CrossRefGoogle Scholar
  21. 21.
    Iliopoulos, O. 2001. VHL Disease: Genetic and Clinical Observations. Genetic Disorders of Endocrine Neoplasia. Basel Karger (Dahia PML, Eng C. eds) 28:131–166.Google Scholar
  22. 22.
    Seizinger, BR, GA Rouleau, LJ Ozelius, AH Lane, GE Farmer, JM Lamiell, J Haines, JWM Yuen, D Collins, D Majoor-Krakauer, T Bonner, C Mathew, A Rubenstein, J Halperin, A McConkie- Rosell, JS Green, JA Trofatter, BA Ponder, L Eierman, MI Bowmer, R Schimke, B Oostra, N Aronin, DI Smith, H Drabkin, MH Waziri,WJ Hobbs, R.L Martuza, PM Conneally,YE Hsia, and JF Gusella. 1988. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332:268–269.Google Scholar
  23. 23.
    Crossey, P, E Maher, M Jones, F Richards, F Latif, M Phipps, M Lush, K Foster, K Tory, J Green, B Oostra, J Yates, W Linehan, N Affara, M Lerman, B Zbar, Y Nakamura, and M Ferguson-Smith. 1993. Genetic linkage between von Hippel-Lindau disease and three microsatellite polymorphisms refines the localisation of the VHL locus. Human Molecular Genetics 2:279–282.CrossRefPubMedGoogle Scholar
  24. 24.
    Maher, E, E Bentley, J Yates, F Latif, M Lerman, B Zbar, N Affara, and M Ferguson-Smith. 1991. Localization of the gene for von Hippel-lindau disease to a small region of chromosome 3p by genetic linkage analysis. Genomics 10:957–960.CrossRefPubMedGoogle Scholar
  25. 25.
    Duan, DR, JS Humphrey, DYT Chen, Y Weng, J Sukegawa, S Lee, JR Gnarra, WM Linehan, and RD Klausner. 1995. Characterization of the VHL tumor suppressor gene product-localization, complex formation, and the effect of natural inactivating mutations. Proc Natl Acad Sci (USA) 92:6495–6499.CrossRefGoogle Scholar
  26. 26.
    Gnarra, J, J Ward, F Porter, J Wagne, D Devor, A Grinberg, M Emmert-Buck, H Westphal, R Klausner, and W Linehan. 1997. Defective placental vasculogenesis causes embryonic lethality in VHL-deficient mice. Proc Natl Acad Sci U S A 94:9102–9107.CrossRefPubMedGoogle Scholar
  27. 27.
    Woodward, ER, A Buchberger, SC Clifford, LD Hurst, NA Affara, and ER Maher. 2000. Comparative sequence analysis of the VHL tumor suppressor gene. Genomics 65:253–265.CrossRefPubMedGoogle Scholar
  28. 28.
    Adryan, B, H-J Decker, TS Papas, and T Hsu. 2000. Tracheal development and the von HippelLindau tumor suppressor homolog in Drosophila. Oncogene 19:2803–2811.CrossRefPubMedGoogle Scholar
  29. 29.
    Stolle, C, G Glenn, B Zbar, J Humphrey, P Choyke, M Walther, S Pack, K Hurley, C Andrey, R Klausner, and W Linehan. 1998. Improved detection of germline mutations in the von HippelLindau disease tumor suppressor gene. Hum Mutat3 12:417–423.CrossRefGoogle Scholar
  30. 30.
    Prowse, A, A Webster, F Richards, S Richard, S Olschwang, F Resche, N Affara, and E Maher. 1997. Somatic inactivation of the VHL gene in Von Hippel-Lindau disease tumors. American Journal of Human Genetics 60:765–761.PubMedGoogle Scholar
  31. 31.
    Lubensky, IA, JR Gnarra, P Bertheau, MM Walther, WM Linehan, and Z Zhuang. 1996. Allelic deletions of the VHL gene detected in multiple microscopic clear cell renal lesions in von HippelLindau disease patients. American Journal of Pathology 149:2089–2094.PubMedGoogle Scholar
  32. 32.
    Gnarra, JR, K Tory, Y Weng, L Schmidt, MH Wei, H Li, F Latif, S Liu, F Chen, F-M Duh, I Lubensky, DR Duan, C Florence, R Pozzatti, MM Walther, NH Bander, HB Grossman, H Brauch, S Pomer, JD Brooks, WB Isaacs, MI Lerman, B Zbar, and WM Linehan. 1994. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genetics 7:85–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Shuin, T, K Kondo, S Torigoe, T Kishida, Y Kubota, M Hosaka, Y Nagashima, H Kitamura, F Latif, B Zbar, MI Lerman, and M Yao. 1994. Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas. Cancer Res 54:2852–2855.PubMedGoogle Scholar
  34. 34.
    Kanno, H, K Kondo, S Ito, I Yamamoto, S Fujii, S Torigoe, N Sakai, M Hosaka, T Shuin, and M Yao. 1994. Somatic mutations of the von Hippel-Lindau Tumor supressor gene in sporadic central nervous systems hemangioblastomas. Cancer Research 54:4845–4847.PubMedGoogle Scholar
  35. 35.
    Vortmeyer, AO, IA Lubensky, F Fogt, WM Linehan, U Khettry, and Z Zhuang. 1997. Allelic deletion and mutation of the von Hippel-Lindau tumor suppressor gene in pancreatic microcystic adenomas. Am J Pathol 151:951–956.PubMedGoogle Scholar
  36. 36.
    Chen, F, T Kishida, M Yao, T Hustad, D Glavac, M Dean, JR Gnarra, ML Orcutt, FM Duh, G Glenn, J Green, YE Hsia, J Lamiell, HW Ming, L Schmidt, T Kalman, I Kuzmin, T Stackhouse, F Latif, WM Linehan, M Lerman, and B Zbar. 1995. Germline mutations in the von hippel-lindau disease tumor suppressor gene: correlations with phenotype. Human Mutation 5:66–75.CrossRefPubMedGoogle Scholar
  37. 37.
    Crossey, PA, FM Richards, K Foster, JS Green, A Prowse, F Latif, MI Lerman, B Zbar, NA Affara, MA Ferguson-Smith, and ER Maher. 1994. Identification of intragenic mutations in the von Hippel-Lindau disease tumor suppressor gene and correlation with disease phenotype. Hum Mol Gen 3:1303–1308.CrossRefPubMedGoogle Scholar
  38. 38.
    Maher, E, A Webster, F Richards, J Green, P Crossey, S Payne, and A Moore. 1996. Phenotypic expression in von Hippel-Lindau disease: Correlations with germline VHL gene mutations Journal of Medical Genetics 33:328–332.Google Scholar
  39. 39.
    Iliopoulos O, A Kibel, S Gray, and WG Kaelin. 1995. Tumor Suppression by the Human von HippelLindau Gene Product. Nature Medicine 1:822–826.CrossRefPubMedGoogle Scholar
  40. 40.
    Gnarra, JR, S Zhou, MJ Merrill, J Wagner, A Kunlun, E Papavassiliou, EH Oldfield, RD Klausner, and WM Linehan. 1996. Post-transcriptional regulation of vascular endothelial growth factor mRNA by the VHL tumor suppressor gene product. Proc Natl Acad Sci 93:10589–10594.CrossRefPubMedGoogle Scholar
  41. 41.
    Knebelmann, B, S Ananth, HT Cohen, and VP Sukhatme. 1998. Transforming growth factor a is a target for the von Hippel-Lindau tumor suppressor protein. Cancer Res 58:226–231.PubMedGoogle Scholar
  42. 42.
    Ananth, S, B Knebehnann, W Gruning, M Dhanabal, G Walz, IE Stillman, and VP Sukhatme. 1999. Transforming growth factor betal is a target for the von Hippel-Lindau tumor suppressor and a critical growth factor for clear cell renal carcinoma. Cancer Res 59:2210–2216.PubMedGoogle Scholar
  43. 43.
    Semenza, GL. 1999. Perspectives on oxygen sensing. Cell 98:281–284.CrossRefPubMedGoogle Scholar
  44. 44.
    Iliopoulos O, C Jiang, AP Levy, WG Kaelin, and MA Goldberg. 1996. Negative Regulation of Hypoxia-Inducible Genes by the von Hippel-Lindau Protein. Proc Natl Acad Sci 93:10595–10599.CrossRefPubMedGoogle Scholar
  45. 45.
    Gorospe, M, JM Egan, B Zbar, M Lerman, L Geil, I Kuzmin, and NJ Holbrook. 1999. Protective function of von Hippel-Lindau protein against impaired protein processing in renal carcinoma cells. Mol Cell Biol 19:1289–1300.PubMedGoogle Scholar
  46. 46.
    Schoenfeld, AR, T PArris, A Eisenberger, EJ Davidowitz, M De Leon, F Talasazan, P Devarajan, and RD Burk. 2000. The von Hippel Lindau tumor suppressor gene protects cells from UV-mediated apoptosis. Oncogne 19:5851–5857.CrossRefGoogle Scholar
  47. 47.
    Pause A, S Lee, KM Lonergan, and RD Klausner. 1998. The von Hippel-Lindau Tumor Suppressor Gene is Required for Cell Cycle Exit Upon Serum Withdrawal. Proc Natl Acad Sci (USA).Google Scholar
  48. 48.
    Ohh M, RL Yauch, KM Lonergan, JM Whaley, AO Stemmer-Rachamimov, DN Louis, BJ Gavin, N Kley, WG Kaelin, O Iliopoulos, and WG Kaelin. 1998. The von Hippel-Lindau Tumor Suppressor Protein is Required for Proper Assembly of an Extracellular Fibronectin Matrix. Mol Cell 1:In Press.Google Scholar
  49. 49.
    Davidowitz, EJ, AR Schoenfeld, and RD Burk. 2001. VHL induces renal cell differentiation and growth arrest through integration of cell-cell and cell-extracellular matrix signaling. Mol Cell Biol 21:865–874.CrossRefPubMedGoogle Scholar
  50. 50.
    Lieubeau-Teillet, B, J Rak, S Jothy, O Iliopoulos, W Kaelin, and RS Kerbel. 1998. VHL gene mediated growth suppression and induction of differentiation in renal cell carcinoma cell grown as multicellular tumor spheroids. Cancer Research 58:4957–4962.PubMedGoogle Scholar
  51. 51.
    Kanno, H, F Saljooque, I Yamamoto, S Hattori, M Yao, T Shuin, and H-S U. 2000. Role of the von HIppel-Lindau tumor suppressor protein during neuronal differentiation. Cancer Res 60:2820–2824.PubMedGoogle Scholar
  52. 52.
    Iliopoulos O, M Ohh, and W Kaelin. 1998. pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc Natl Acad Sci USA 95: 11661–11666.CrossRefPubMedGoogle Scholar
  53. 53.
    Schoenfeld, A, E Davidowitz, and R Burk. 1998. A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. Proc Natl Acad Sci U S A 195:8817–8822.CrossRefGoogle Scholar
  54. 54.
    Lee, S, M Neumann, R Stearman, R Stauber, A Pause, G Pavlakis, and R Klausner. 1999. Transcription-Dependent Nuclear-Cytoplasmic Trafficking Is Required for the Function of the von Hippel-Lindau Tumor Suppressor Protein. Mol Cell Biol 19:1486–1497.PubMedGoogle Scholar
  55. 55.
    Stebbins, CE, WG Kaelin, and NP Pavletich. 1999. Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284:455–461.CrossRefPubMedGoogle Scholar
  56. 56.
    Maxwell, PH, RMS Wiesene, GW Chang, SC Clifford, EC Vaux, ME Cockman, CC Wykoff, CW Pugh, ER Maher, and PJ Ratcliffe. 1999. The tumour suppressor protein VHL targets hypoxiainducible factors for oxygen-dependent proteolysis. Nature 399:271–275.CrossRefPubMedGoogle Scholar
  57. 57.
    Semenza, GL. 1998. Hypoxia-inducible factor 1: master regulator of 02 homeostasis. Curr Opin Genet Dev 8:588–594.CrossRefPubMedGoogle Scholar
  58. 58.
    Semenza, GL. 1999. Regulation of mammalian 02 homeostasis by hypoxia-inducible factor 1. Annu Rev Cell Dev Biol 15:581–578.CrossRefGoogle Scholar
  59. 59.
    Ohh, M, CW Park, M Ivan, MA Hoffman, TY Kim, LE Huang, N Pavletich, V Chau, and WG Kaelin. 2000. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2:423–427.CrossRefPubMedGoogle Scholar
  60. 60.
    Jaakkola, P, D Mole, YM Tian, MI Wilson, J Gielbert, LSJ Gaskel, AA Kriegsheim, HF Hebestreit, M Mukherji, CJ Schofield, PH Maxwell, CW Pugh, and PJ Ratcliffe. 2001. Targeting of HIF-alpha to the von Hippel-Lindau Ubiquitylation Complex by 02-Regulated Prolyl Hydroxylation. Science 292:468–472.CrossRefPubMedGoogle Scholar
  61. 61.
    Ivan, M, K Kondo, H Yang, W Kim, J Valiando, M Ohh, A Salic, JM Asara, WS Lane, and WG Kaelin. 2001. HIFla targeted for VHL-mediated destruction by praline hydroxylation: implications for oxygen sensing. Science 292:464–468.CrossRefPubMedGoogle Scholar
  62. 62.
    Epstein, ACR, JM Gleadle, and LAEA McNeill. 2001 C. Elegans EGL-9 and mammalian homologs define a family of Dioxygenases that regulate HIF by Prolyl Hydroxylation. Cell 107:43–54.CrossRefPubMedGoogle Scholar
  63. 63.
    Maranchie, JK, JR Vasselli, J Riss, JS Bonifacino, WM Linehan, and RD Klausner. 2002. The contribution of VHL substrate binding and HIF]-alpha to the phenotype of VHL loss in renal cell carcinoma. Cancer Cell 1:247–255.CrossRefPubMedGoogle Scholar
  64. 64.
    Kondo, K, J Klco, E Nakamura, M Lechpammer, and WG Kaelin. 2002. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 1:237–246.CrossRefPubMedGoogle Scholar
  65. 65.
    Okuda, H, K Saitoh, S Hirai, K Iwai, Y Takaki, M Baba, N Minato, S Ohno, and T Shuin. 2001. The von Hippel-Lindau tumor suppressor protein mediates ubiquitination of activated atypical protein kinase C. J Biol Chem 276:43611–43617.CrossRefPubMedGoogle Scholar
  66. 66.
    Li, Z, X Na, D Wang, SR Schoen, EM Messing, and G Wu. 2002. Ubiquitination of a novel deubiquitinating enzyme requires direct binding to von Hippel-Lindau tumor suppressor protein. J Biol Chem 277:4656–4662.CrossRefPubMedGoogle Scholar
  67. 67.
    European Consostrium on Tuberous Sclerosis: Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75:1305–1315.CrossRefGoogle Scholar
  68. 68.
    Consortium: Identification of the TSC1 gene on chromosome 9q34. Science 277:805–808.CrossRefGoogle Scholar
  69. 69.
    Niida Y, N Lawrence-Smith, A Banwell, E Hammer, J Lewis, RL Beauchamp, K Sims, V Ramesh, and L Ozelius. 1999. Analysis of both TSC1 and TSC2 for germline mutations in 126 unrelated patients with tuberous sclerosis. Hum Mutat 14:412–422.CrossRefPubMedGoogle Scholar
  70. 70.
    Roach, ES, MR Gomez, and H Northurp. 1988. Tuberous sclerosis complex consensus conference: revised clinical diagnostic criteria. J Child Neurology 13:624–628.CrossRefGoogle Scholar
  71. 71.
    Roach, ES, FJ DiMario, and H Northurp. 1998. Tuberous sclerosis consensus conference: recommendations for diagnostic evaluation J Child Neurology 14:401–407.CrossRefGoogle Scholar
  72. 72.
    Zimmer-Galler, IE, and DM Robertson. 1995. Long-term observation of retinal lesions in tuberous sclerosis. Am J Ophthalmol 119:318–324.PubMedGoogle Scholar
  73. 73.
    Ewalt, DH, E Sheffield, SP Sparagana, MR Delgado, and ES Roach. 1998. Renal lesion growth in children with tuberous sclerosis complex. J Urol 1998 Jul;160(1):141–145 160:141–145.Google Scholar
  74. 74.
    Al-Saleem, T, LL Wessner, BW Scheithauer, K Patterson, ES Roach, SJ Dreyer, K Fujikawa, J Bjornsson, J Bernstein, and EP Henske. 1998. Malignant tumors of the kidney, brain, and soft tissues in children and young adults with the tuberous sclerosis complex. Cancer 83:2208–2216.CrossRefPubMedGoogle Scholar
  75. 75.
    Martignoni, G, F Bonetti, M Pea, R Tardanico, M Brunelli, and _TN Eble. 2002. Renal disease in adults with TSC2/PKDI contiguous gene syndrome. Am J Surg Pathol 26:198–205.CrossRefPubMedGoogle Scholar
  76. 76.
    Siegel, DH, and R Howard. 2002. Molecular advances in genetic skin diseases. Curr Opin Pediatr 14:419–425.CrossRefPubMedGoogle Scholar
  77. 77.
    Pacheco-Rodriguez G, AS Kristof, LA Stevens, Y Zhang, D Crooks, and J Moss. 2002. Giles F. Filley Lecture: Genetics and gene expression in lymphangioleiomyomatosis. Chest 121:56S–60S.CrossRefPubMedGoogle Scholar
  78. 78.
    Yeung, RS, G-H Xiao, F Jin, W-C Lee, jfk. Testa, and AG Knudson. 1994. Predisposition to renal carcinoma in the Eker rat is determined by germ-line mutation of the tuberous sclerosis 2 (TSC2) gene. Proc Nat Acad Sci 91:11413–11416.CrossRefPubMedGoogle Scholar
  79. 79.
    Rennebeck, G, EV Kleymenova, R Anderson, RS Yeung, K Artzt, and CL Walker. 1998. Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci USA 95: 15629–15634.CrossRefPubMedGoogle Scholar
  80. 80.
    Ito, N, and GM Rubin. 1999. Gigas, a Drosophila homolog of tuberous sclerosis gene product-2, regulates the cell cycle. Cell 96:529–539.CrossRefPubMedGoogle Scholar
  81. 81.
    Tapon, N, N Ito, BJ Dickson, JE Treisman, and IK Hariharan. 2001. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105:345–355.CrossRefPubMedGoogle Scholar
  82. 82.
    MacCollin, M, and D Kwiatkowski. 2001. Molecular genetic aspects of the phakomatoses: tuberous sclerosis complex and neurofibromatosis 1. Curr Opin Neurol 14:163–169.CrossRefPubMedGoogle Scholar
  83. 83.
    Kwiatkowska, J, J Wigowska-Sowinska, D Napierala, R Slomski, and DJ Kwiatkowski. 1999. Mosaicism in tuberous sclerosis as a potential cause of the failure of molecular diagnosis. N Engl J Med 340:703–707.CrossRefPubMedGoogle Scholar
  84. 84.
    Rose VM, KS Au, G Pollom, ES Roach, HR Prashner, and H Northrup. 1999. Germ-line mosaicism in tuberous sclerosis: how common? Am J Hum Genet 64:986–992.CrossRefPubMedGoogle Scholar
  85. 85.
    Brook-Carter, PT, B Peral, and C Ward, et al. 1994. Deletion of the TSC2 and PKDI gene associated with severe infantile polycystic kidney disease-A contiguous gene syndrome. Nat Genet 8:328–332.CrossRefPubMedGoogle Scholar
  86. 86.
    Dabora, SL, S Jozwiak, DN Franz, PS Roberts, A Nieto, J Chung, YS Choy, MP Reeve, E Thiele, JC Egelhoffi, J Kasprzyk-Obara, D Domanska-Pakiela, and DJ Kwiatkowski. 2001. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 68:64–80.CrossRefPubMedGoogle Scholar
  87. 87.
    Langkau, N, N Martin, R Brandt, K Zugge, S Quast, G Wiegele, A Jauch, M Rehm, A Kuhl, RM Mack-Vette, B Zimmerhackl, and B Janssen. 2002. TSC1 and TSC2 mutations in tuberous sclerosis, the associated phenotypes and a model to explain observed TSC1/TSC2 frequency ratios. Eur J Pediatr 161:393–402.CrossRefPubMedGoogle Scholar
  88. 88.
    Van Slegtenhorst, M, M Nellist, B Nagelkerken, J Cheadle, R Snell, A van den Ouweland, A Reuser, JP Sampson, D Halley, and P Sluijs. 1998. Interaction between hamartin and tuberin, TSC1 and TSC2 gene products. Hum Mol Genet 7:1053–1057.CrossRefPubMedGoogle Scholar
  89. 89.
    Green, AJ, M Smith, and JRW Yates. 1994. Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients. Nature Genet 6:192–196.CrossRefGoogle Scholar
  90. 90.
    Sepp, T, JR Yates, and AJ Green. 1996. Loss of heterozygosity in tuberous sclerosis hamartomas. J Med Genet 33:962–964.CrossRefPubMedGoogle Scholar
  91. 91.
    Henske, EP, HP Neumann, BW Scheithauer, EW Herbst, MP Short, and DJ Kwiatkowski. 1995. Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band l6pl3 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Gene Chromosomes Cancer 13: 295–298.CrossRefGoogle Scholar
  92. 92.
    Carsillo, T, A Astrinidis, and EP Henske. 2000. Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci 97: 6085–6090.CrossRefPubMedGoogle Scholar
  93. 93.
    Henske, EP, HP Neumann, BW Scheithauer, EW Herbst, MP Short, and DJ Kwiatkowski. 1995. Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band l6pl3 occurs in sporadic as well as TSC-associated renal angiomyolipomas. Genes Chromosomes Cancer 13:295–298.CrossRefPubMedGoogle Scholar
  94. 94.
    Jin, F, R Wienecke, GH Xiao, JC Maize, JE DeClue, and RS Yeung. 1996. Suppression of tumorigenicity by the wild-type tuberous sclerosis 2 (Tsc2) gene and its C-terminal region. Proc Natl Acad Sci 93:9154–9159.CrossRefPubMedGoogle Scholar
  95. 95.
    Niida, Y, AO Stemmer-Rachamimov, M Logrip, D Tapon, R Perez, DJ Kwiatkowski, K Sims, M MacCollin, DN Louis, and V Ramesh. 2001. Survey of somatic mutations in tuberous sclerosis complex (TSC) hamartomas suggests different genetic mechanisms for pathogenesis of TSC lesions. Am j Hum Genet 69:493–503.CrossRefPubMedGoogle Scholar
  96. 96.
    Kobayashi, T, O Minowa, J Kuno, H Mitani, O Hino, and T Noda. 1999. Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 59:1206–1211.PubMedGoogle Scholar
  97. 97.
    Onda, H, A Lueck, PW Marks, HB Warren, and DJ Kwiatkowski. 1999. Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. J Clin Invest 104:687–695.CrossRefPubMedGoogle Scholar
  98. 98.
    Kobayashi, T, O Minowa, Y Sugitani, S Takai, H Mitani, E Kobayashi, T Noda, and O Hino. 2001. A germ-line Tscl mutation causes tumor development and embryonic lethality that are similar, but not identical to, those caused by Tsc2 mutation in mice. Proc Natl Acad Sci 98:8762–8767.CrossRefPubMedGoogle Scholar
  99. 99.
    Potter, CJ, LG Pedraza, and T Xu. 2002. Akt regulates growth by directly phosphorylating Tsc2. Nat Cell Biol 4:658–665.CrossRefPubMedGoogle Scholar
  100. 100.
    Gao X, Y Zhang, P Arrazola, O Hino, T Kobayashi, RS Yeung, B Ru, and D Pan. 2002. Tsc tumour suppressor proteins antagonize amino-acid-TOR signalling. Nat Cell Biol 4:699–704.CrossRefPubMedGoogle Scholar
  101. 101.
    Inoki, K, Y Li, T Zhu, J Wu, and KL Guan. 2002. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 4:648–657.CrossRefPubMedGoogle Scholar
  102. 102.
    Manning, BD, AR Tee, MN Logsdon, J Blenis, and LC Cantley. 2002. Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10:151–162.CrossRefPubMedGoogle Scholar
  103. 103.
    Luttrell LM, Y Daaka, and RJ Lefkowitz. 1999. Regulation of tyrosine kinase cascades by G-proteincoupled receptors. Curr Opin Cell Biol 11:177–183.CrossRefPubMedGoogle Scholar
  104. 104.
    Wienecke, R, A Koning, and J DeClue. 1995. Identification of tuberin, the tuberous sclerosis 2 product. Tuberin possesses specific Rap] GAP activity. J Biol Chem 270:16409–16414.CrossRefPubMedGoogle Scholar
  105. 105.
    Kovacs, G, P Brusa, and W De Riese. 1989. Tissue-specific expression of a constitutional 3;6 translocation: development of multiple bilateral renal-cell carcinomas. Int J Cancer 43:422–427.CrossRefPubMedGoogle Scholar
  106. 106.
    Bodmer, D, MJ Eleveld, MJ Ligtenberg, MA Weterman, BA Janssen, DF Smeets, PE de Wit, A van den Berg, E van den Berg, MI Koolen, and A Geurts van Kessel. 1998. An alternative route for multistep tumorigenesis in a novel case of hereditary renal cell cancer and a t(2;3)(q35;q21) chromosome translocation. Am J Hum Genet 62(6):1475–1483:1475–1483.CrossRefPubMedGoogle Scholar
  107. 107.
    Bodmer, D, M Eleveld, M Ligtenberg, M Weterman, A van der Meijden, M Koolen, C Hulsbergen-van der Kaa, SD Smits A, and A Geurts van Kessel. 2002. Cytogenetic and molecular analysis of early stage renal cell carcinomas in a family with a translocation (2;3)(q35;q21). Cancer Genet Cytogenet 134:6–12.CrossRefPubMedGoogle Scholar
  108. 108.
    Podolski, J, T Byrski, S Zajaczek, T Druck, DB Zimonjic, NC Popescu, G Kata, A Borowka, J Gronwald, J Lubinski, and RK Huebne. 2001. Characterization of a familial RCC-associated t(2;3)(q33;q21) chromosome translocation. J Hum Genet 46:685–693.CrossRefPubMedGoogle Scholar
  109. 109.
    Li, FP, HJ Decker, B Zbar, VP Stanton, G Kovacs, BR Seizinger, H Aburatani, AA Sandberg, S Berg, and S Hosoe, et al. 1993. Clinical and genetic studies of renal cell carcinomas in a family with a constitutional chromosome 3;8 translocation. Ann Intern Med 118:106–111.PubMedGoogle Scholar
  110. 110.
    Schmidt, L, F Li, RS Brown, S Berg, F Chen, MH Wei, K Tory, MI Lerman, and B Zbar. 1995. Mechanism of Tumorigenesis of Renal Carcinomas Associated with the Constitutional Chromosome 3;8 Translocation. Cancer J Sci Am 1:191.PubMedGoogle Scholar
  111. 111.
    Eleveld, MJ, D Bodmer, G Merkx, A Siepman, SH Sprenger, MA Weterman, MJ Ligtenberg, J Kamp, W Stapper, JW Jeuken, D Smeets, A Smits, and A Geurts Van Kessel. 2001. Molecular analysis of a familial case of renal cell cancer and a t(3;6)(q12;q15). Genes Chromosomes Cancer 31:23–32.CrossRefPubMedGoogle Scholar
  112. 112.
    Zbar, B. 2000. Inherited epithelial tumors of the kidney: old and new disease. Semin Cancer Biol 10:313–318.CrossRefPubMedGoogle Scholar
  113. 113.
    Ohta, M, H Inoue, MG Cotticelli, K Kastury, R Baffa, J Palazzo, Z Siprashvili, M Mori, P McCue, and EA Druck T. 1996. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormalin digestive tract cancers. Cell 84:587–597.CrossRefPubMedGoogle Scholar
  114. 114.
    Siprashvili, Z, G Sozzi, LD Barnes, P McCue, AK Robinson, V Eryomin, L Sard, E Tagliabue, A Greco, L Fusetti, G Schwartz, MA Pierotti, CM Croce, and K Huebner. 1997. Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci U S A 94:13771–13776.CrossRefPubMedGoogle Scholar
  115. 115.
    Hadaczek, P, Z Siprashvili, M Marldewski, W Domagala, T Druck, PA McCue,Y Pekarsky, M Ohta, K Huebner, and J Lubinski. 1998. Absence or reduction of Fhit expression in most clear cell renal carcinomas. Cancer Res 158:2946–2951.Google Scholar
  116. 116.
    Fong LY, V Fidanza, N Zanesi, LF Lock, LD Siracusa, R Mancini, Z Siprashvili, M Ottey, SE Martin, T Druck, P McCue, CM Croce, and K Huebner. 2000. Muir-Tone-like syndrome in Fhitdeficient mice. Proc Natl Acad Sci 97:4742–4747.CrossRefPubMedGoogle Scholar
  117. 117.
    Gemmill, RM, JD West, F Boldog, N Tanaka, 14 Robinson, DI Smith, F Li, and HA Drabkin. 1998. The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8. Proc Natl Acad Sci U S A 95:9572–9577.CrossRefPubMedGoogle Scholar
  118. 118.
    Bale, AE, and KP Yu. 2001. The hedgehog pathway and basal cell carcinomas. Hum Mol Genet 10:757–762.CrossRefPubMedGoogle Scholar
  119. 119.
    Druck, T, J Podolski, T Byrski, L Wyrwicz, S Zajaczek, G Kata, A Borowka, J Lubinski, and K Huebner. 2001. The DIRCI gene at chromosome 2q33 spans a familial RCC-associated t(2;3)(q33;q21) chromosome translocation. J Hum Genet 46:583–589.CrossRefPubMedGoogle Scholar
  120. 120.
    Bodmer, D, M Eleveld, E Kater-Baats, I Janssen, B Janssen, M Weterman, E Schoenmaker, M Nickerson, M Linehan, B Zbar, and AG van Kessel. 2002. Disruption of a novel MFS transporter gene, DIRC2, by a familial renal cell carcinoma-associated t(2;3)(q35;q21). Hum Mol Genet 2002 Mar 15;11(6):641–649; 11:641–649.Google Scholar
  121. 121.
    Goedert, JJ, EA McKeen, and JF Fraumeni. 1981. Polymastia and renal adenocarcinoma. Ann Intern Med 95:182–184.PubMedGoogle Scholar
  122. 122.
    Mehes, K. 1996. Familial association of supernumerary nipple with renal cancer. Cancer Genet Cytogenet 86:129–130.CrossRefPubMedGoogle Scholar
  123. 123.
    Teh, B, S Giraud, F Sari, S Hii, J Bergerat, LCJ Limacher, and D Nicol. 1997 Familial non-VHL non-papillary clear-cell renal cancer. Lancet 349:848–849.CrossRefPubMedGoogle Scholar
  124. 124.
    Zbar, B, and M Lerman. 1998. Inherited carcinomas of the kidney. Advances Cancer Research 75:163–201.CrossRefGoogle Scholar
  125. 125.
    Schmidt, L, F Duh, F Chen, T Kishida, G Glenn, P Choyke, S Scherer, Z Zhuang, I Lubensky, M Dean, R Allikmets, A Chidambaram, U Bergerheim, J Feltis, C Casadevall, A Zamarron, M Bernues, S Richard, C Lips, M Walther, L Tsui, L Geil, M Orcutt, T Stackhouse, and BEA Zbar. 1997. Gennline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nature Genetics 16:68–73.CrossRefPubMedGoogle Scholar
  126. 126.
    Zhuang, Z, WS Park, S Pack, L Schmidt, AO Vortmeyer, E Pak, T Pham, RJ Weil, S Candidus, IA Lubensky, WM Linehan, B Zbar, and G Weirich. 1998. Trisomy 7-harbouring non-random duplication of the mutant MET allele in hereditary papillary renal carcinomas. Nat Genet 1998 Sep;20(1):66–69; 20:66–69.Google Scholar
  127. 127.
    Duh, FM, SW Scherer, LC Tsui, MI Lerman, B Zbar, and L Schmidt. 1997. Gene structure of the human MET proto-oncogene. Oncogene 15:1583–1586.CrossRefPubMedGoogle Scholar
  128. 128.
    Bardelli, A, C Ponzetto, and PM Comoglio. 1994. Identification of functional domains in the hepatocyte growth factor and its receptor by molecular engineering. J Biotechnol 37:109–122.CrossRefPubMedGoogle Scholar
  129. 129.
    Bottaro, DP, JS Rubin, DL Faletto, AM Chan, TE Kmiecik, GF Vande Woude, and SA Aaronson. 1991. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science 251:802–804.CrossRefPubMedGoogle Scholar
  130. 130.
    Ponzetto, C, A Bardelli, Z Zhen, F Maina, P dalla Zonca, S Giordano, A Graziani, G Panayotou, and PM Comoglio. 1994. A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell 77:261–271.CrossRefPubMedGoogle Scholar
  131. 131.
    Naldini, L, E Vigna, R Ferracini, P Longati, L Gandino, M Prat, and PM Comoglio. 1991. The tyrosine kinase encoded by the MET proto-oncogene is activated by autophosphorylation. Mol Cell Biol 4:1793–1803.Google Scholar
  132. 132.
    Nakaigawa, N, G Weirich, L Schmidt, and B Zbar. 2000. Tumorigenesis mediated by MET mutant M1268T is inhibited by dominant-negative Src. Oncogene 19:2996–3002.CrossRefPubMedGoogle Scholar
  133. 133.
    Giordano, S, Z Zhen, E Medico, G Gaudin, F Galimi, and PM Comoglio. 1993. Transfer of motogenic and invasive response to scatter factor/hepatocyte growth factor by transfection of human MET protooncogene. Proc Natl Acad Sci 90:649–653.CrossRefPubMedGoogle Scholar
  134. 134.
    Koochekpour, S, M Jeffers, PH Wang, C Gong, GA Taylor, LM Roessler, R Stearman, JR Vasselli, WG Stetler-Stevenson, WG Kaelin, WM Linehan, RD Klausner, JR Gnarra, and GF Vande Woude. 1999. The von Hippel-Lindau tumor suppressor gene inhibits hepatocyte growth factor/scatter factor-induced invasion and branching morphogenesis in renal carcinoma cells. Mol Cell Biol 19:5902–5912.PubMedGoogle Scholar
  135. 135.
    Launonen, V, O Vierimaa, M Kiuru, J Isola, S Roth, E Pukkala, P Sistonen, R Herva, and LA Aaltonen. 2001. Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci 98:3387–3392.CrossRefPubMedGoogle Scholar
  136. 136.
    Alam, NA, S Bevan, and MEA Churchman. 2001. Localization of a gene (MCULI) for multiple cutaneous leiomyomata and uterine fibroids to chromosome 1q42.3-q43. Am J Hum Genet 68:1264–1269.CrossRefPubMedGoogle Scholar
  137. 137.
    Consortium TML. 2002. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat Genet 30:306–310.CrossRefGoogle Scholar
  138. 138.
    Rustin, P. 2002. Mitochondria, from cell death to proliferation. Nat Genet 30:352–353.CrossRefPubMedGoogle Scholar
  139. 139.
    Baysal, BE, RE Ferrell, JE Willett-Brozick, EC Lawrence, D Myssiorek, A Bosch, A van der Mey, PE Taschner, WS Rubinstein, EN Myers, CW Richard, CJ Cornelisse, P Devilee, and B Devlin. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851.CrossRefPubMedGoogle Scholar
  140. 140.
    Astuti, D, F Douglas, TW Lenard, IA Aligianis, ER Woodward, DG Evans, C Eng, F Latif, and ER Maher. 2001. Germline SDHD mutation in familial phaeochromocytoma. Lancet 357: 1181–1182.CrossRefPubMedGoogle Scholar
  141. 141.
    Nieman, S, and U Muller. 2000. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nature Genet 26:268–270.CrossRefGoogle Scholar
  142. 142.
    Malchoff, CD, M Sarfarazi, B Tendler, F Forouhar, G Whalen, V Joshi, A Arnold, and DM Malchoff. 2000. Papillary thyroid carcinoma associated with papillary renal neoplasia: genetic linkage analysis of a distinct heritable tumor syndrome. J Clin Endocrinol Metab 85:1758–1764.CrossRefPubMedGoogle Scholar
  143. 143.
    Bin, AR, GR Hogg, and WJ Dube. 1977. Hereditary multiple fibrofolliculomas with trichodiscomas and acrochordons. Arch Dermatol 113:1674–1677.CrossRefGoogle Scholar
  144. 144.
    Scalvenzi, M, G Argenziano, E Sammarco, and M Delfmo. 1998. Hereditary multiple fibrofolliculomas, trichodiscomas and acrochordons: syndrome of Birt-Hogg-Dube. J Eur Acad Dermatol Venereol 11:45–47.PubMedGoogle Scholar
  145. 145.
    Toro, JR, G Glenn, P Duray, T Darling, G Weirich, B Zbar, M Linehan, and ML Turner. 1999. Birt-Hogg-Dube syndrome: a novel marker of kidney neoplasia. Arch Dermatol 135:1195–1202.CrossRefPubMedGoogle Scholar
  146. 146.
    Roth, JS, AD Rabinowitz, M Benson, and ME Grossman. 1993. Bilateral renal cell carcinoma in the Birt-Hogg-Dube syndrome. J Am Acad Dermatol 29:1055–1056.CrossRefPubMedGoogle Scholar
  147. 147.
    Khoo, SK, M Bradley, FK Wong, MA Hedblad, M Nordenskjold, and BT Teh. 2001. Birt-HoggDube syndrome: mapping of a novel hereditary neoplasia gene to chromosome l7pl 2-ql 1.2. Oncogene 20:5239–5242.CrossRefPubMedGoogle Scholar
  148. 148.
    Schmidt, LS, MB Warren, ML Nickerson, G Weirich, V Matrosova, JR Toro, ML Turner, P Duray, M Merino, S Hewitt, CP Pavlovich, G Glenn, CR Greenberg, WM Linehan, and B Zbar. 2001. Birt-Hogg-Dube syndrome, a genodermatosis associated with spontaneous pneumothorax and kidney neoplasia, maps to chromosome 17p11.2. Am J Hum Genet 69:876–882.CrossRefPubMedGoogle Scholar
  149. 149.
    Weirich, G, G Glenn, RK Junke, M Merino, S Storkel, I Lubensky, P Choyke, S Pack, M Amin, MM Walther, WM Lineha, and B Zbar. 1998. Familial renal oncocytoma: clinicopathological study of 5 families. J Urol 160:335–340.CrossRefPubMedGoogle Scholar
  150. 150.
    Leroy, X, E Leteurtre, PH Mahe, B Gosselin, B Delobel, and MF Croquette. 2002. Renal oncocytoma with a novel chromosomal rearrangement, der(13)t(13;16)(p1 1;p11), associated with a renal cell carcinoma. J Clin Pathol 55:157–158.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Michael Zimmer
    • 1
  • Othon Iliopoulos
    • 1
  1. 1.From The Massachusetts General Hospital Cancer Center and MGH Familial Renal Cancer ClinicHarvard Medical SchoolBoston

Personalised recommendations