Advertisement

Phase Structure and Thermal Evolution in Mixed Oxide TiO2-ZrO2 Powders Obtained by the Sol-Gel Process

  • M. E. Manríquez
  • T. López
  • D. H. Aguilar
  • P. Quintana
Chapter

Abstract

In this work we present the phase structure evolution, with long annealing times, of mixed oxides powders in the TiO2-ZrO2 system, obtained by the sol-gel method. Several compositions were synthesized via the catalytic hydrolysis of titanium and zirconium butoxides, HNO3 was added to adjust the pH=3. Pure zirconia and titania were also prepared. Long thermal treatments were applied from 100–1000°C, increasing the temperature every 100°C. These samples were heated during 20 h at each temperature.

By combining XRD, DTA and FTIR the main changes on the phase crystallization were analyzed. Pure titania show the formation of anatase from the fresh sample, with heating a progressive transformation occurs to rutile phase. The mixed oxides over the composition range 50–100 wt % ZrO2, produce an amorphous powder up to 600°C. The samples rich in titania, can incorporate ZrO2 only into the rutile lattice forming a solid solution. In the middle region, the continuous increasing of zirconia favors the crystallization of ZTss at 700°C. At the rich-end zirconia, the formation of a monoclinic zirconia solid solution (Zmss) was observed, and the crystallization temperature of ZTss diminishes up to 500°C. Tetragonal zirconia was not observed. Finally, pure zirconia show the coexistence of the monoclinic and tetragonal polymorphs over a wide temperature range, 400–900°C.

Photocatalytic activity of ZrTiO4 and the parent oxides, was evaluated monitoring the degradation of 2,4-dinitroaniline by UV-VIS spectroscopy; and the energy band gap was calculated.

Keywords

Photocatalytic Activity Pure Titania Pure Zirconia Catalytic Hydrolysis Titanium Butoxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.-
    Konstantinou, I. K.; Sakkas, V. A.; Albanis, T. A. Appi. Catal. B. 2001, 24,227.CrossRefGoogle Scholar
  2. 2.-
    Wang, K. H.; Hsieh, Y. H.; Chou, M. Y.; Chang, C. Y. Appl. Catal. B 1999, 21, 1.CrossRefGoogle Scholar
  3. 3.-
    Tang, W. Z.; Huang, C. P. Water Res. 1995, 29, 745.CrossRefGoogle Scholar
  4. 4.-
    Hermann, J. M.; Disdier, J.; Pichat, P.; Malato, S.; Blanco, J. Appi Catal. B 1998, 17, 15.CrossRefGoogle Scholar
  5. 5.-
    Hermann, J. M.; Guillard, C.; Arguello, M.; Aguera, A.; Tejedor, A.; Piedra, L.; Fernandez-Alba, A. Catal. Today 1999, 54, 353.CrossRefGoogle Scholar
  6. 6.-
    Navío, J. A.; Hidalgo, M. C.; Roncel, M.; De la Rosa, M. A. Material Letters 1999, 39, 370.CrossRefGoogle Scholar
  7. 7.-
    Yu, J. C.; Lin, J.; Kwok, R. W. M. J. Phys. Chem. B 1998, 102, 5094.CrossRefGoogle Scholar
  8. 8.-
    Fu, X.; Clark, L. A.; Yang, Q.; Anderson, M. A.; Environ. Set Technol. 1996, 30, 647.CrossRefGoogle Scholar
  9. 9.-
    Anderson, C.; Bard, A. J.; J. Phys. Chem. B 1997, 101, 2611.CrossRefGoogle Scholar
  10. 10.-
    Reddy, M. B.; Chowdhury, B.; Ganesh, I.; Reddy, E. P.; Rojas, T. C.; Fernandez, A. J. Phys. Chem. B 1998, 102, 10176.CrossRefGoogle Scholar
  11. 11.-
    Wu, J. C.; Chung, C. S.; Ay, C. L.; Wang, I. J. Catal., 1984, 87, 98.CrossRefGoogle Scholar
  12. 12.-
    Zorn, M. E.; Tompkins, D. T.; Zeltner, W. A.; Anderson, M. A. Appl. Catal. B: Environmental 1999, 23, 1.CrossRefGoogle Scholar
  13. 13.-
    Lai, S. Y.; Pan, W.; Ng, C. F.; Appl. Catal. B: Environmental 2000, 24, 207.CrossRefGoogle Scholar
  14. 14.-
    Haneda, M.; Kintaichi, Y.; Inaba, M.; Hamada, H.; Catal. Today, 1998, 42, 127.CrossRefGoogle Scholar
  15. 15.-
    Fung, J.; Wang, I.; J. Catal. 1984, 130, 577.Google Scholar
  16. 16.-
    Arata, K.; Tanabe, K.; Bull. Chem. Soc. Jpn. 1980, 53, 299.CrossRefGoogle Scholar
  17. 17.-
    Feth, M. P.; Weber, A.; Merkle, R.; Reinohl, U.; Bertagnolli, H. J. Non-Cryst. Solids 2002, 298, 43.CrossRefGoogle Scholar
  18. 18.-
    Reddy, E. P.; Rojas, T..C.; Fernández, A.; Chowdhury, B.; Reddy, B. M. Langmuir 2000, 16, 4217.CrossRefGoogle Scholar
  19. 19.-
    McHale, A. E.; Roth, R. S. J. Am. Ceram. Soc. 1983, 66, C-18.CrossRefGoogle Scholar
  20. 20.-
    McHale, A. E.; Roth, R. S. J. Am. Ceram. Soc. 1986, 69, 827.CrossRefGoogle Scholar
  21. 21.-
    Bannister, M. J., Barnes, J. M. J. Am. Ceram. Soc. 1986, C-269.Google Scholar
  22. 22.-
    Park, Y. Mat. Lett. 1999, 38, 313.CrossRefGoogle Scholar
  23. 23.-
    Xu, J.; Lind, C.; Wilkinson, A. P.; Pattanaik, S. Chem. Mater. 2000, 12, 3347.CrossRefGoogle Scholar
  24. 24.-
    Xu, Q.; Anderson, M. A. J. Am. Ceram. Soc. 1993, 76, 2093.CrossRefGoogle Scholar
  25. 25.-
    PDF card No. 34–0415Powder Diffraction File, International Center for Diffraction Data (ICDD), Pennsylvania, USA (2000).Google Scholar
  26. 26.-
    Sánchez, E., López, T. Mater. Lett. 1995, 25, 271.CrossRefGoogle Scholar
  27. 27.-
    Litter, M. I. Appl. Catal B. 1999, 23, 89.CrossRefGoogle Scholar
  28. 28.-
    Xie, S., Iglesia, E., Bell, A.T. Chem Mater. 2000, 12, 242.CrossRefGoogle Scholar
  29. 29.-
    Emeline, A., Kataeva, G. V., Litke, A. S., Rudakova, A..V., Ryabchuk, V. K., Serpone, N. Langmuir 1998, 14, 5011.CrossRefGoogle Scholar
  30. 30.-
    Hernandez-Ventura, J., Gómez, R., Tzompantzi, F. J. Mol. Catal A: Chem. 2000, 2995.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • M. E. Manríquez
    • 1
  • T. López
    • 1
  • D. H. Aguilar
    • 2
  • P. Quintana
    • 2
  1. 1.Depto. de QuímicaUAM-IztapalapaMéxico, D.FMéxico
  2. 2.Depto. de Física AplicadaCinvestav-Unidad MéridaMérida, YucatánMéxico

Personalised recommendations