Skip to main content

A Review of Fractal Conductance Fluctuations in Ballistic Semiconductor Devices

  • Chapter
Book cover Electron Transport in Quantum Dots

Abstract

The ability to scale device sizes to below a micro-meter has profound implications for electron conduction in semiconductor systems. For conventional circuits, the reduced component size offers the rewards of higher packing densities and faster operating speeds. However, in terms of the search for new classes of electronic devices, designed to replace the transistor as the basic component of electronic circuits, the prospect of current flow across sub-micron distances holds even greater potential. Traditional current flow concepts, in which electron propagation along the device’s length is modeled as a classical diffusion process, can no longer be applied. Both the classical and quantum mechanical transmission characteristics may ultimately be harnessed to produce revolutionary modes of device functionality. Intimately coupled to these objectives of applied physics, sub-micron devices also provide a novel environment for the study of a rich variety of fundamental semiconductor physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Taylor, The role of surface gate technology for ALGaAs/GaAs nanostructures, J. Nanotechnol. 5, 183 (1994).

    Article  ADS  Google Scholar 

  2. Microstructural Engineering (ed. R.R Kramer), Delft University Press, Amsterdam, pp. 381 (1981); The Physics and Fabrication of Micro structures and Microdevices (ed. M.J. Kelly and C. Weisbuch), Springer-Verlag, Berlin, pp. 36 (1986).

    Google Scholar 

  3. H.G. Craighead, A. Scherer, and M.L. Roukes, Nanofabrication, in The Physics and Technology of Submicron Structures (ed. Heinrich, Bauer, and Kuchar), Springer, Heidelberg (1988).

    Google Scholar 

  4. T.J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G.J. Davies, One-dimensional conduction in the 2D electron gas of a GaAs-AlGaAs heterojunction, Phys. Rev. Lett. 56, 1198-1201 (1986).

    Article  ADS  Google Scholar 

  5. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P Kouwenhoven, D. van der Marel, and C.T. Foxon, Quantized conductance of point contacts in a two-dimensional electron gas, Phys. Rev. Lett. 60, 848-851 (1988).

    Article  ADS  Google Scholar 

  6. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, One-dimensional transport and the quantisation of the ballistic resistance, J. Phys. C 21, L209-212 (1988).

    ADS  Google Scholar 

  7. C.W.J. Beenakker and Van H. Houten, Quantum transport in semiconductor nanostructures, Solid State Phys. 44, 1 (1991).

    Article  Google Scholar 

  8. C.M. Marcus, A.J. Rimberg, R.M. Westervelt, P.F. Hopkins, and A.C. Gossard, Conductance fluctuations and chaotic scattering in ballistic microstructures, Phys. Rev. Lett. 69, 506-509(1992).

    Article  ADS  Google Scholar 

  9. A.M. Chang, H.U. Baranger, L.N. Pfeiffer, and K.W. West, Weak localization in chaotic versus nonchaotic cavities: A striking difference in the line shape, Phys. Rev. Lett. 73, 2111-2114(1994).

    Article  ADS  Google Scholar 

  10. R.A. Jalabert, H.U. Baranger, and A.D. Stone, Conductance fluctuations in the ballistic regime: A probe of quantum chaos?, Phys. Rev. Lett. 63, 2442-2445 (1990).

    Article  ADS  Google Scholar 

  11. H.U. Baranger, R.A. Jalabert, and A.D. Stone, Weak localisation and instability in ballistic cavities, Phys. Rev. Lett. 70, 3876-3879 (1993).

    Article  ADS  Google Scholar 

  12. E. Ott, Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993).

    MATH  Google Scholar 

  13. For a review see K. Nakamura, Quantum Chaos—A New Paradigm of Non-linear Dynamics. Cambridge Universty Press, Cambridge (1993).

    Google Scholar 

  14. Y. Aharonov and D. Bohm, Significance of electromagnetic potentials in the quantum theory, Phys. Rev. 115,485(1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. R.P Taylor, PC. Main, L. Eaves, S. Thorns, S.P Beaumont, and C.D.W. Wilkinson, Universal conductance fluctuations in the magnetoresistance of submicron-size GaAs wires, Surf. Sci. 196, 52-55(1988).

    Article  ADS  Google Scholar 

  16. R. Ketzmerick, Fractal conductance fluctuations in generic chaotic cavities, Phys. Rev. B 54, 10841-10844(1996).

    Article  Google Scholar 

  17. B.B. Mandelbrot, The Fractal Geometry of Nature. Freeman and Company, New York (1977).

    Google Scholar 

  18. J.-F. Gouyet, Physics and Fractal Structures. Springer-Verlag, New York (1996).

    Google Scholar 

  19. R.P. Taylor, R. Newbury, R.B. Dunford, P.T. Coleridge, A.S. Sachrajda, and J.A. Adams, A tunable ballistic electron cavity exhibiting geometry induced weak localization, Superlatt. Microstruct. 16, 317 (1994); R.P. Taylor, R. Newbury, R.B. Dunford, PT. Coleridge, A.S. Sachrajda, and J.A. Adams, Classical and weak localization processes in a tunable ballistic electron cavity, Phys. Rev. B 51, 9801 (1995); R.P. Taylor, R. Newbury, A.S. Sachrajda, PT. Coleridge, P Zawadzki, R.B. Dunford, Y Feng, J.P. Bird, C.R. Leavens, J.M. Cadogan, J.A. Adams, RJ. Kelly, M. Davies, and S. Brown, The use of wide ballistic cavities to investigate local weak localization processes induced by geometric scattering, Semicond. Sci. Technol. 11, 1 (1996).

    Article  Google Scholar 

  20. Y.G. Sinai, Dynamical systems with elastic reflections, Russian Mathematical Surveys 25, 137(1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. E. Doron, U. Smilansky, and A. Frenkel, Experimental demonstration of chaotic scattering of microwaves, Phys. Rev. Lett. 65, 3072-3075 (1990).

    Article  ADS  Google Scholar 

  22. V. Milner, J.L. Hanssen, W.C. Campbell, and M.G. Raizen, Optical billiards for atoms, Phys. Rev. Lett. 86, 1514-1517 (2001).

    Article  ADS  Google Scholar 

  23. A. Kaplan, N. Friedman, M. Anderson, N. Davidson, Observation of islands of stability in soft wall atom-optics billiards, Phys. Rev. Lett. 87(274101), 1-4 (2001).

    Google Scholar 

  24. R.P. Taylor, R. Newbury, A.S. Sachrajda, Y. Feng, N. Zhu, H. Guo, P.T. Coleridge, A. Delage, P.J. Kelly, Z. Wasilewski, and P. Zawadski, Geometry-induced quantum interference: A continuous evolution from square to Sinai billiard, Superlatt. Microstruct. 20, 297-305 (1996); and R.P. Taylor, R. Newbury, A.S. Sachrajda, Y. Feng, P.T. Coleridge, Z. Wasilewski, N. Zhu, and H. Guo, The transition from a square to a Sinai billiard, in World Scientific 2 (ed. M. Scheffler and R. Zimmermann), 1549-1552(1996).

    Article  ADS  Google Scholar 

  25. R.P. Taylor, J.A. Adams, M. Davies, P.A. Marshall, and R. Barber, Fabrication of nanostructures with multi-level architecture, J. Vac. Sci. Technol. B 11, 628 (1993).

    Article  Google Scholar 

  26. R.P. Taylor, Y. Feng, A.S. Sachrajda, J.A. Adams, and M. Davies, Fabrication and characterization of multi-level lateral nanostructures, Surf. Sci. 305, 648-651 (1994).

    Article  ADS  Google Scholar 

  27. R. Shaw, The dripping faucet as a model chaotic system. Aerial Press, Santa Cruz (1984).

    Google Scholar 

  28. R.P. Taylor, A.P. Micolich, R. Newbury, C. Dettmann, and T.M. Fromhold, Fractal Transistors, Semicond. Sci. Technol. 12, 1459-1464(1997).

    Article  ADS  Google Scholar 

  29. T.M. Fromhold, Fractal resistance in a transistor, Nature 386, 124 (1997).

    Article  ADS  Google Scholar 

  30. R.P. Taylor, R. Newbury, A.S. Sachrajda, Y. Feng, P.T. Coleridge, C. Dettmann, N. Zhu, H. Guo, A. Delage, P.J. Kelly, and Z. Wasilewski, Self-similar magnetoresistance in a semiconductor Sinai billiard, Phys. Rev. Lett. 78, 1952-1955 (1997).

    Article  ADS  Google Scholar 

  31. R.P. Taylor, R. Newbury, A.S. Sachrajda, Y. Feng, and P.T. Coleridge, Tunable semiconductor Sinai billiards, IEEE J. 171-173 (1997) (ISBN 0-7803-3374-8/97).

    Google Scholar 

  32. R.P. Taylor, A.P. Micolich, R. Newbury, and T.M. Fromhold, Correlation analysis of self-similarity in semiconductor billiards, Phys. Rev. B Rapid Commun. 56, R12733-R12756 (1997).

    Article  ADS  Google Scholar 

  33. R.P. Taylor, A.P. Micolich, R. Newbury, J.P. Bird, T.M. Fromhold, J. Cooper, Y. Aoyagi, and T. Sugano, Exact and statistical self-similarity in semiconductor billiards: A unified picture, Phys. Rev. B 58, 11107-11110 (1998).

    Article  Google Scholar 

  34. R.P Taylor, A.P. Micolich, R. Newbury, T.M. Fromhold, and C.R. Tench, Observation of fractal conductance fluctuations over three orders of magnitude, Aus. J. Phys. 52, 887-893(1999).

    Article  ADS  Google Scholar 

  35. R.P. Taylor, A.P. Micolich, R. Newbury, T.M. Fromhold, A. Ehlert, A.G. Davies, C.R. Tench, J.P. Bird, H. Linke, W.R. Tribe, E.H. Linfield, and D.A. Ritchie, Semiconductor billiards: A controlled environment to study fractals, in Nobel Symposium on Quantum Chaos (eds. K.F. Berggren and S. Aberg), World Scientific, Singapore, ISBN 981 02 4711-7, and The Royal Swedish Academy of Sciences, 41-49 (2001).

    Chapter  Google Scholar 

  36. D. Avnir, O. Biham, and O. Malcai, Is the geometry of nature fractal?, Science 279, 39(1998).

    Article  ADS  MATH  Google Scholar 

  37. See, for example, J.P. Bird, Recent experimental studies of electron transport in open quantum dots, J. Phys.: Condens. Matter 11, R413 (1999).

    Article  ADS  Google Scholar 

  38. R.V. Jensen, The signature of chaos, Chaos 1, 101 (1991).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  39. T.M. Fromhold, C.R. Tench, R.P. Taylor, A.P. Micolich, and R. Newbury, Self-similar conductance fluctuations in a Sinai billiard with mixed chaotic phase space: Theory and experiment, Physica B 249-251, 334-338 (1998).

    Article  Google Scholar 

  40. Y. Takagaki and K.H. Ploog, Numerical simulation of fractal conductance fluctuations in softwall cavities, Physical Review B 61, 4457-4461 (2000); Relation between stable orbits and quantum transmission resonance in ballistic cavities, Phys. Rev. E 62, 4804-4808 (2000).

    Article  ADS  Google Scholar 

  41. A.R Micolich, R.P. Taylor, R. Newbury, T.M. Fromhold, and C.R. Tench, The Weierstrass function as a model of self-similarity in a semiconductor Sinai billiard, Europhys. Lett. 49, 417-423(2000).

    Article  ADS  Google Scholar 

  42. S. Kawabata and K. Nakamura, Altshuler Aronov Spivak effect in ballistic chaotic Agharonov-Bohm billiards, J. Phys. Soc. Japan 65, 3708 (1996).

    Article  ADS  Google Scholar 

  43. G.H. Hardy, Transcripts Am. Math. Soc. 17, 301 (1916).

    MATH  Google Scholar 

  44. A.R Micolich, R.P. Taylor, J.P. Bird, R. Newbury, T.M. Fromhold, J. Cooper, Y. Aoyagi, and T. Sugano, Scale factor mapping of statistical and exact self-similarity in billiards, Semicond. Sci Technol 13, A41-43 (1998).

    Article  ADS  Google Scholar 

  45. R.P. Taylor, Levy flights, in Encyclopedia of Non-linear Science (ed. A. Scott), Fitzroy-Dearborn, London (2003).

    Google Scholar 

  46. A.P. Micolich, R.P. Taylor, R. Newbury, J.P. Bird, R. Wirtz, C.P. Dettmann, Y. Aoyagi, and T. Sugano, Geometry induced fractal behavior in a semiconductor billiard, J. Phys.: Condens. Matter 10, 1339-1347 (1998); R.P. Taylor, A.P. Micolich, T.M. Fromhold, and R. Newbury, Comment on fractal conductance fluctuations in a soft wall stadium and a Sinai billiard, Phys. Rev. Lett. 83, 1074 (1999).

    Article  ADS  Google Scholar 

  47. A.R Micolich, R.R Taylor, J.R Bird, and R. Newbury, Electron behavior in AlGaAs/GaAs square quantum dots, Proc. N.Z. Aus. Inst. Phys. Annu. Condens. Matter Phys. Meeting 1037-1214(1997), ISSN TP20.

    Google Scholar 

  48. B. Dubuc, J.F. Quiniou, C. Roques-Carnes, C. Tricot, and S.W. Zucker, Evaluating the fractal dimension of profiles, Phys. Rev. A 39, 1500 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  49. Y. Takagaki, M. ElHassan, A. Shailos, C. Prasad, J.P. Bird, D.K. Ferry, K.H. Ploog, L.H. Lin, N. Aoki, and Y. Ochiai, Magnetic field controlled electron dynamics in quantum cavities, Phys. Rev. B 62, 10255-10260(2000).

    Article  Google Scholar 

  50. A.S. Sachrajda, R. Ketzmerick, C. Gould, Y Feng, P.J. Kelly, A. Delage, and Z. Wasilewski, Fractal conductance fluctuations in a softwall stadium and a Sinai billiard, Phys. Rev. Lett. 80, 1948-1951 (1998).

    Article  ADS  Google Scholar 

  51. Y Ochiai, L.H. Lin, K. Yamamoto, K. Ishibashi, Y Aoyagi, T. Sugano, J.P. Bird, D. Vasileska, R. Akis, and D.K. Ferry, Low temperature magnetotransport in ballistic quantum dots and wires, Semicond. Sci. Technol. 13, A15 (1998).

    Article  ADS  Google Scholar 

  52. H. Hegger, B. Huckestein, K. Hecker, M. Janssen, A. Freimuth, G. Reckziegel, and R. Tuzinski, Fractal conductance fluctuations in gold nanowires, Phys. Rev. Lett. 77, 3885-3888(1996).

    Article  ADS  Google Scholar 

  53. A.P. Micolich, R.P. Taylor, A.G. Davies, J.P. Bird, R. Newbury, T.M. Fromhold, A. Ehlert, H. Linke, L.D. Macks, W.R. Tribe, E.H. Linfield, D.A. Ritchie, J. Cooper, Y. Aoyagi, and P.B. Wilkinson, Evolution of fractal patterns during a classical-quantum transition, Phys. Rev. Lett. 87, (036802), 1-4 (2001).

    Google Scholar 

  54. R.M. Clarke, I.H. Chan, C.M. Marcus, C.I. Duruoz, J.S. Harris, K. Campman, and A.C. Gossard, Temperature dependence of phase breaking in ballistic quantum dots, Phys. Rev. B 52, 2656(1995).

    Article  ADS  Google Scholar 

  55. A.P. Micolich, R.P. Taylor, R. Newbury, J.P. Bird, Y. Aoyagi, and T. Sugano, Temperature dependence of the fractal dimension of magnetoconductance fluctuations in a mesoscopic semiconductor billiard, Superlatt. Microstruct. 25, 157-161 (1999).

    Article  ADS  Google Scholar 

  56. J.M. Ziman, Electrons and Phonons; The Theory of Transport Phenomena in Solids. Clarendon Press, Oxford (1960).

    MATH  Google Scholar 

  57. J.R Bird, K. Ishibashi, D.K. Ferry, R. Newbury, D.M. Olatona, Y. Ochiai, Y. Aoyagi, and T. Sugano, Phase breaking in ballistic quantum dots: A correlation field analysis, Surf. Sci. 361/362, 730-734(1996).

    Article  ADS  Google Scholar 

  58. D.P. Pivin, A. Andresen, J.R Bird, and D.K. Ferry, Saturation of phase breaking in an open ballistic quantum dot, Phys. Rev. Lett. 82, 4687-4700 (1999).

    Article  ADS  Google Scholar 

  59. Y Sun, G. Kirczenow, A.S. Sachrajda, and Y Feng, An electrostatic model of split-gate quantum wires, J. Appl. Phys. 77, 6361 (1995).

    Article  ADS  Google Scholar 

  60. O.E. Raichev and F.T. Vasko, Edge-induced modification of tunnel mixing and resistance resonance in double-quantum-well strips, Phys. Rev. B 57, 12350 (1998).

    Article  Google Scholar 

  61. A.R Micolich, R.P. Taylor, A.G. Davies, T.M. Fromhold, H. Linke, R. Newbury, A. Elhert, L.D. Macks, W.R. Tribe, E.H. Linfield, and D.A. Ritchie, Dependence of fractal conductance fluctuations on soft-wall profile in a double-layer semiconductor billiard, Appl. Phys. Lett. 80, 4381-4383(2002).

    Article  ADS  Google Scholar 

  62. N.P.R. Hill, J.T. Nicholls, E.H. Linfield, M. Pepper, D.A. Ritchie, G.A.C. Jones, Y.K.H. Ben, and K. Flensberg, Correlation effects on the coupled plasmon modes of a double quantum well, Phys. Rev. Lett. 78, 2204-2207 (1997).

    Article  ADS  Google Scholar 

  63. T.J. Gramila, J.P. Eisenstein, A.H. Macdonald, L.N. Pfeiffer, and K.W. West, Mutual friction between parallel two-dimensional electron systems, Phys. Rev. Lett. 66, 1216-1219(1991).

    Article  ADS  Google Scholar 

  64. K.J. Thomas, M.Y. Simmons, J.T. Nicholls, D.R. Mace, M. Pepper, and D.A. Ritchie, Ballistic transport in one-dimensional constrictions formed in deep two-dimensional electron gases, Appl. Phys. Lett. 67, 109-111 (1995).

    Article  ADS  Google Scholar 

  65. A. Budiyono and K. Nakamura, Self-similar magnetoconductance fluctuations induced by self-similar periodic orbits (submitted).

    Google Scholar 

  66. E. Louis and J.A. Verges, Self-similar magnetoconductance fluctuations in quantum dots, Phys. Rev. B 61, 13014-13020(2000).

    Article  Google Scholar 

  67. B. Huckerstein, R. Ketzmerick, and C.H. Lewenkopf, Quantum transport through ballistic cavities: Soft vs hard quantum chaos, Phys. Rev. Lett. 84, 5504-5507 (2000).

    Article  ADS  Google Scholar 

  68. R. Ketzmerick, L. Hufnagel, F. Steinbach, and M. Weiss, New class of eigenstates in the generic hamiltonian systems, Phys. Rev. Lett. 85, 1214-1217 (2000).

    Article  ADS  Google Scholar 

  69. G. Casati, I. Guarneri, and G. Maspero, Fractal survival probability fluctuations, Phys. Rev. Lett. 84, 63-66 (2000).

    Article  ADS  Google Scholar 

  70. G. Benenti, G. Casati, I. Guareri, and M. Terraneo, Quantum fractal fluctuations, Phys. Rev. Lett. 87,014101-1-4(2001).

    Article  ADS  Google Scholar 

  71. A.P.S. de Moura, Y.C. Lai, R. Akis, J.P. Bird, and D.K. Ferry, Tunnelling and nonhyperbolicity in quantum dots, Phys. Rev. Lett. 88, (236804), 1-4 (2002).

    Google Scholar 

  72. R.P. Taylor, R. Newbury, A.S. Schrajda, Y. Feng, P.T. Coleridge, M. Davies, and J.P. McCaffrey, An investigation of current injection properties of ohmic spikes in nanos-tructures, Superlatt. Microstruct. 24, 337-345 (1998); Can ohmic spikes define quantum systems?, Japan. J. Appl. Phys. 36, 3964-3967 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, R. et al. (2003). A Review of Fractal Conductance Fluctuations in Ballistic Semiconductor Devices. In: Bird, J.P. (eds) Electron Transport in Quantum Dots. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0437-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0437-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7459-2

  • Online ISBN: 978-1-4615-0437-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics