Classical and Quantum Transport in Antidot Arrays

  • D. Weiss
  • K. Richter
  • J. Eroms
Chapter

Abstract

The story of solid state physics is the story of electrons in periodic potentials caused by the periodic arrangement of atoms in crystalline solids. It was early recognized that an additionally imposed periodic potential can significantly modify the solid’s properties [1]. A major breakthrough in this respect was the concept of bandstructure engineering introduced by L. Esaki and R. Tsu [2,3]. The advent of molecular beam epitaxy with the possibility to grow semiconductor crystals atom by atom (see, e.g. [4]) allowed one not only to fabricate such one-dimensional superlattices superimposed upon the three-dimensional crystallographic lattice but also to realize two-dimensional electron systems (2DES) of superior quality [5]. Two-dimensional electron systems offered a wealth of new phenomena and are still the subject of current research. Prominent examples of effects based on the reduction of dimensionality for conduction electrons (or holes), are the quantum Hall effect (QHE) [6] and the fractional quantum Hall effect (FQHE) [7]. New phenomena were also expected for a one- or two-dimensional (2D) periodic potential imposed upon a two-dimensional electron system [8,9]. By using nanolithographic techniques it is possible these days to impress periodic potentials of different strength, period and shape upon high mobility two-dimensional electron systems such that the electron mean free path l e and phase coherence lenght l ø is much longer than the period of the periodic potentials. Two different types of potential landscapes are displayed in Fig. 5.1 showing weak and strong 2D-periodic potentials imposed upon a two-dimensional electron system.

Keywords

Nickel Microwave Attenuation Hexagonal Soliton 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.V. Keldish, Effect of ultrasonics on the electron spectrum of crystals, Sov. Phys. Solid State 4, 1658-1659 (1963).Google Scholar
  2. 2.
    L. Esaki and R. Tsu, Superlattice and negative conductivity in semiconductors, IBM Res. Note RC-2418 (1969).Google Scholar
  3. 3.
    L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Dev. 14(1), 61-65 (1970).Google Scholar
  4. 4.
    A. Cho, Molecular Beam Epitaxy. AIP Press, Woodbury (1994).Google Scholar
  5. 5.
    R. Dingle, H.L. Stormer, A.C. Gossard, and W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices, Appl. Phys. Lett. 33(7), 665-667(1978).ADSGoogle Scholar
  6. 6.
    K. von Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494-497(1980).ADSGoogle Scholar
  7. 7.
    D.C. Tsui, H.L. Störmer, and A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559-1562 (1982).ADSGoogle Scholar
  8. 8.
    H. Sakaki, K. Wagatsuma, J. Hamasaki, and S. Saito, Possible applications of surface-corrugated quantum thin films to negative-resistance devices, Thin Solid Films 36(2), 497-501 (1976).ADSGoogle Scholar
  9. 9.
    R.K. Reich, R.O. Grondin, D.K. Ferry, and G.J. Iafrate, Transport in surface superlattices, Phys. Lett. A 91A (1), 28-30 (1982).ADSGoogle Scholar
  10. 10.
    C. Albrecht, J.H. Smet, D. Weiss, K. von Klitzing, R. Hennig, M. Langenbuch, M. Suhrke, U. Rössler, V. Umansky, and H. Schweizer, Fermiology of two-dimensional lateral superlattices, Phys. Rev. Lett. 83(11), 2234-2237 (1999).ADSGoogle Scholar
  11. 11.
    R.A. Deutschmann, W. Wegscheider, M. Rother, M. Bichler, G. Abstreiter, C. Albrecht, and J.H. Smet, Quantum interference in artificial band structures, Phys. Rev. Lett. 86(9), 1857-1860(2001).ADSGoogle Scholar
  12. 12.
    D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential, Europhys. Lett. 8(2), 179-184 (1989).ADSGoogle Scholar
  13. 13.
    R.R. Gerhardts, D. Weiss, and K. von Klitzing, Novel magnetoresistance oscillations in a periodically modulated two-dimensional electron gas, Phys. Rev. Lett. 62(10), 1173-1176 (1989).ADSGoogle Scholar
  14. 14.
    R. W. Winkler, J.P. Kotthaus, and K. Ploog, Landau-band conductivity in a two-dimensional electron system modulated by an artificial one-dimensional superlattice potential, Phys. Rev. Lett. 62(10), 1177-1180 (1989).ADSGoogle Scholar
  15. 15.
    C.W.J. Beenakker, Guiding-center-drift resonance in a periodically modulated two-dimensional electron gas, Phys. Rev. Lett. 62(17), 2020-2023 (1989).ADSGoogle Scholar
  16. 16.
    K. Ensslin and P.M. Petroff, Magnetotransport through an antidot lattice in GaAs-Alx Ga1_x As heterostructures, Phys. Rev. B 41(17), 12307-12310 (1990).ADSGoogle Scholar
  17. 17.
    R. Fleischmann, T. Geisel, and R. Ketzmerick, Magnetoresistance due to chaos and nonlinear resonances in lateral surface superlattices, Phys. Rev. Lett. 68(9), 1367-1370 (1992).ADSGoogle Scholar
  18. 18.
    N.I. Chernov, G.L. Eyink, J.L. Lebowitz, and Y.G. Sinai, Derivation of Ohm’s law in a deterministic mechanical model, Phys. Rev. Lett. 70 (1993).Google Scholar
  19. 19.
    A. Kuzmany and H. Spohn, Magnetotransport in the two-dimensional Lorentz gas, Phys. Rev. E 57(1998).Google Scholar
  20. 20.
    W. Kang, H.L. Störmer, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, How real are composite fermions?, Phys. Rev. Lett. 71(23), 3850-3853 (1993).ADSGoogle Scholar
  21. 21.
    J.H. Smet, D. Weiss, K. von Klitzing, P.T. Coleridge, Z.W. Wasilewski, R. Bergmann, H. Schweizer, and A. Scherer, Composite fermions in periodic and random antidot lattices, Phys. Rev. B 56(7), 3598-3601 (1997).ADSGoogle Scholar
  22. 22.
    M.V. Berry, Quantizing a classically ergodic system: Sinai’s billiard and the KKR method, Ann. Phys. 131(1), 163-216 (1981).ADSGoogle Scholar
  23. 23.
    T. Ando, A.B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54(2), 437-672 (1982).ADSGoogle Scholar
  24. 24.
    D. Weiss, P. Grambow, K. von Klitzing, A. Menschig, and G. Weimann, Fabrication and characterization of deep mesa etched ‘anti’-dot superlattices in GaAs-AlGaAs heterostructures, Appl. Phys. Lett. 58(25), 2960-2962 (1991).ADSGoogle Scholar
  25. 25.
    D. Weiss, M.L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, and G. Weimann, Electron pinball and commensurate orbits in a periodic array of scatterers, Phys. Rev. Lett. 66(21), 2790-2793 (1991).ADSGoogle Scholar
  26. 26.
    G. Müller, D. Weiss, K. von Klitzing, K. Ploog, H. Nickel, W. Schlapp, and R. Losch, Confinement-potential tuning: from nonlocal to local transport, Phys. Rev. B 46(7), 4336-4339(1992).ADSGoogle Scholar
  27. 27.
    P.M. Petroff, Y.J. Li, T.J. Li, Z. Xu, W. Beinstingl, S. Sasa, and K. Ensslin, Nanostructures processing by focused ion beam implantation, J. Vac. Sci. Technol. B 9(6), 3074-3078 (1991).Google Scholar
  28. 28.
    G.M. Sundaram, N.J. Bassom, R.J. Nicholas, G.J. Rees, P.J. Heard, P.D. Prewett, J.E.F. Frost, G.A.C. Jones, D.C. Peacock, and D.A. Ritchie, Magnetoconductivity in a mesoscopic antidot array, Phys. Rev. B 47(12), 7348-7353 (1993).ADSGoogle Scholar
  29. 29.
    A. Lorke, J.P. Kotthaus, and K. Ploog, Magnetotransport in two-dimensional lateral superlattices, Phys. Rev. B 44(7), 3447-3450 (1991).ADSGoogle Scholar
  30. 30.
    G. Berthold, T. Suski, J. Smoliner, R. Maschek, E. Gornik, G. Bohm, and G. Weimann, Pressure- and gate voltage-induced transitions from lateral surface superlattice to antidot systems, Semicond. Sci. Tech. 8(8), 1512-1516 (1993).ADSGoogle Scholar
  31. 31.
    G. Lütjering, D. Weiss, R.W. Tank, K. von Klitzing, A. Hulsmann, T. Jakobus, and K. Kohler, Metal-non-metal transition at the crossover from antidots to quantum dots, Surf. Sci. 361-362, 925-929 (1996).ADSGoogle Scholar
  32. 32.
    A.S. Sachrajda, Y. Feng, R.P. Taylor, G. Kirczenow, L. Henning, J. Wang, P. Zawadzki, and P.T. Coleridge, Magnetoconductance of a nanoscale antidot, Phys. Rev. B 50(15), 10856-10863 (1994).ADSGoogle Scholar
  33. 33.
    M. Wendel, S. Kuhn, H. Lorenz, J.P. Kotthaus, and M. Holland, Nanolithography with an atomic force microscope for integrated fabrication of quantum electronic devices, Appl. Phys. Lett. 65(14), 1775-1777 (1994).ADSGoogle Scholar
  34. 34.
    A. Dorn, M. Sigrist, A. Fuhrer, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Electronic properties of antidot lattices fabricated by atomic force lithography, Appl. Phys. Lett. 80(2), 252-254 (2002).ADSGoogle Scholar
  35. 35.
    R.A. Deutsehmann, C. Stocken, W. Wegscheider, M. Bichler, and G. Abstreiter, Com-mensurability effects in lateral surface-doped superlattices, Appl. Phys. Lett. 78(15), 2175-2177(2001).ADSGoogle Scholar
  36. 36.
    M.L. Roukes, A. Scherer, S.J. Allen, Jr., H.G. Craighead, Jr., R.M. Ruthen, E.D. Beebe, and J.P. Harbison, Quenching of the Hall effect in a one-dimensional wire, Phys. Rev. Lett. 59(26), 3011-3014 (1987).ADSGoogle Scholar
  37. 37.
    H. Fang and P.J. Stiles, Novel magnetoresistance oscillations in a two-dimensional superlattice potential, Phys. Rev. B 41(14), 10171-10174 (1990).ADSGoogle Scholar
  38. 38.
    T. Yamashiro, J. Takahara, Y. Takagaki, K. Gamo, S. Namba, S. Takaoka, and K. Murase, Commensurate classical orbits on triangular lattices of anti-dots, Solid State Commun. 79(11), 885-887 (1991).ADSGoogle Scholar
  39. 39.
    J. Takahara, Y. Takagaki, K. Gamo, S. Namba, S. Takaoka, and K. Murase, Fabrication and transport properties of anti-dot triangle lattices, Microelectron. Eng. 17(1-4), 509-512 (1992).Google Scholar
  40. 40.
    J. Takahara, K. Gamo, S. Namba, S. Takaoka, and K. Murase, Transport properties in hexagonal arrays of antidots with different carrier densities, Jpn. J. Appl. Phys. l 31 (12A), 3786-3790 (1992).ADSGoogle Scholar
  41. 41.
    F. Nihey, S.W. Hwang, and K. Nakamura, Observation of large h/2e oscillations in semiconductor antidot lattices, Phys. Rev. B 51(7), 4649-4652 (1995).ADSGoogle Scholar
  42. 42.
    K. Ensslin, S. Sasa, T. Deruelle, and P.M. Petroff, Anisotropic electron transport through a rectangular antidot lattice, Surf. Sci. 263(1-3), 319-323 (1992).ADSGoogle Scholar
  43. 43.
    R. Schuster, K. Ensslin, J.P. Kotthaus, M. Holland, and C. Stanley, Selective probing of ballistic electron orbits in rectangular antidot lattices, Phys. Rev. B 47(11), 6843-6846 (1993).ADSGoogle Scholar
  44. 44.
    J. Takahara, A. Nomura, K. Gamo, S. Takaoka, K. Murase, and H. Ahmed, Magnetotrans-port in hexagonal and rectangular antidot lattices, Jpn. J. Appl. Phys. l 34(8B), 4325-4328 (1995).ADSGoogle Scholar
  45. 45.
    K. Tsukagoshi, M. Haraguchi, K. Oto, S. Takaoka, K. Murase, and K. Gamo, Current-direction-dependent commensurate oscillations in GaAs/AlGaAs antidot superlattice, Jpn. J. Appl. Phys. l 34(8B), 4335-4337 (1995).ADSGoogle Scholar
  46. 46.
    S. Lüthi, T. Vancura, K. Ensslin, R. Schuster, G. Bohm, and W. Klein, Electron trajectories in rectangular antidot superlattices, Phys. Rev. B 55(19), 13088-13092 (1997).ADSGoogle Scholar
  47. 47.
    G.M. Gusev, P. Basmaji, D.I. Lubyshev, L.V. Litvin, Yu.V. Nastaushev, and V.V. Preobrazhenskii, Magneto-oscillations in a two-dimensional electron gas with a Penrose lattice of artificial scatterers, Phys. Rev. B 47(15), 9928-9930 (1993).ADSGoogle Scholar
  48. 48.
    G.M. Gusev, P. Basmaji, Z.D. Kvon, L.V. Litvin, A.I. Toropov, and Yu.V. Nastaushev, Negative differential magnetoresistance and commensurability oscillations of two-dimensional electrons in a disordered array of antidots, J. Phys.: Condens. Matter 6(1), 73-78 (1994).ADSGoogle Scholar
  49. 49.
    K. Tsukagoshi, S. Wakayama, K. Oto, S. Takaoka, K. Murase, and K. Gamo, Transport properties in artificial lateral superlattice, Superlatt. Microstruct. 16(3), 295-301 (1994).Google Scholar
  50. 50.
    K. Tsukagoshi, S. Wakayama, K. Oto, S. Takaoka, K. Murase, and K. Gamo, Magneto-transport through disordered and anisotropic antidot lattices in GaAs/Alx/Ga1_x As heterostructures, Phys. Rev. B 52(11), 8344-8347 (1995).ADSGoogle Scholar
  51. 51.
    O. Yevtushenko, G. Lütjering, D. Weiss, and K. Richter, Weak localization in antidot arrays: signature of classical chaos, Phys. Rev. Lett. 84(3), 542-545 (2000).ADSGoogle Scholar
  52. 52.
    G.M. Gusev, X. Kleber, U. Gennser, D.K. Maude, J.C. Portal, D.I. Lubyshev, P. Basmaji, M.De.P.A. Silva, J.C. Rossi, Y.V. Nastaushev, and M.R. Baklanov, Oscillation of the scattering time in a 2D electron system with oval antidots, Solid-State Electron. 40(1-8), 441-446(1996).Google Scholar
  53. 53.
    T. Azuma and T. Osada, Antidot shape dependence of the commensurability oscillation of magnetoresistance in two-dimensional antidot arrays, Physica B 256-258, 397-400 (1998).ADSGoogle Scholar
  54. 54.
    S. de Haan, A. Lorke, R. Hennig, M. Suhrke, W. Wegscheider, and M. Bichler, Magneto-transport properties of arrays of cross-shaped antidots, Phys. Rev. B 60(12), 8845-8848 (1999).ADSGoogle Scholar
  55. 55.
    D. Többen, M. Holzmann, G. Abstreiter, A. Kriele, H. Lorenz, J.P. Kotthaus, F. Schaffler, Y.H. Xie, P.J. Silverman, and D. Monroe, Antidot superlattices in two-dimensional hole gases confined in strained germanium layers, Semicond. Sci. Tech. 10(10), 1413-1417 (1995).ADSGoogle Scholar
  56. 56.
    M. Holzmann, D. Többen, and G. Abstreiter, Transport in silicon/germanium nanostructures, Appl. Surf. Sci. 102, 230-236 (1996).ADSGoogle Scholar
  57. 57.
    S. Hameau, Y. Guldner, R. Ferreira, S. Zanier, G. Faini, E. Cambril, and Y. Campidelli, Transition from an antidot to a dot array in etched Si/SiGe heterostructures: Influence of the etch depth, Phys. Rev. B 60(23), 15965-15969 (1999).ADSGoogle Scholar
  58. 58.
    S.-I. Osako, T. Sugihara, Y. Yamamoto, T. Maemoto, S. Sasa, M. Inoue, and C. Hamaguchi, Quantum anti-dot arrays and quantum wire transistors fabricated on InAs/Al0.5 Ga0.5Sb heterostructures, Semicond. Sci. Tech. 11(4), 571-575 (1996).ADSGoogle Scholar
  59. 59.
    J. Eroms, M. Zitzlsperger, D. Weiss, J.H. Smet, C. Albrecht, R. Fleischmann, M. Behet, J. De Boeck, and G. Borghs, Skipping orbits and enhanced resistivity in large-diameter InAs/GaSb antidot lattices, Phys. Rev. B 59(12), R7829-7832 (1999).ADSGoogle Scholar
  60. 60.
    J. Eroms, M. Zitzlsperger, D. Weiss, J.H. Smet, C. Albrecht, R. Fleischmann, M. Behet, J. De Boeck, and G. Borghs, Magnetotransport in large diameter InAs/GaSb antidot lattices, Physica B 256-258, 409-412 (1998).ADSGoogle Scholar
  61. 61.
    E.M. Baskin, G.M. Gusev, Z.D. Kvon, A.G. Pogosov, and M. V. Entin, Stochastic dynamics of 2D electrons in a periodic lattice of antidots, JETP Lett. 55(11), 678-682 (1992).ADSGoogle Scholar
  62. 62.
    R. Schuster, G. Ernst, K. Ensslin, M. Entin, M. Holland, G. Bohm, and W. Klein, Experimental characterization of electron trajectories in antidot lattices, Phys. Rev. B 50(11), 8090-8093(1994).ADSGoogle Scholar
  63. 63.
    D. Weiss, G. Lütjering, and K. Richter, Chaotic electron motion in macroscopic and mesoscopic antidot lattices, Chaos Solitons Fractals 8(7-8), 1337-1357 (1997).ADSGoogle Scholar
  64. 64.
    K. Tsukagoshi, T. Nagao, M. Haraguchi, S. Takaoka, K. Murase, and K. Gamo, Com-mensurability oscillations by runaway and pinned electrons, Superlatt. Microstruct. 23(2),493-496(1998).ADSGoogle Scholar
  65. 65.
    R. Fleischmann, T. Geisel, and R. Ketzmeriek, Quenched and negative Hall effect in periodic media: Application to antidot superlattices, Europhys. Lett. 25(3), 219-224 (1994).ADSGoogle Scholar
  66. 66.
    K. Richter, Phase coherence effects in antidot lattices: a semiclassical approach to bulk conductivity, Europhys. Lett. 29(1), 7-12 (1995).ADSGoogle Scholar
  67. 67.
    Wenchang Lu, Theoretical study on commensurability oscillation in anisotropic antidot lattices, Phys. Rev. B 54(11), 8049-8056 (1996).Google Scholar
  68. 68.
    S. Ishizaka and T. Ando, Detailed analysis of the commensurability peak in antidot arrays with various periods, Phys. Rev. B 55(24), 16331-16338 (1997).ADSGoogle Scholar
  69. 69.
    T. Ando, S. Uryu, and S. Ishizaka, Chaos and quantum transport in antidot lattices, Jpn. J. Appl. Phys. l 38(1B), 308-314 (1999).ADSGoogle Scholar
  70. 70.
    D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer, K. von Klitzing, and G. Weimann, Quantized periodic orbits in large antidot arrays, Phys. Rev. Lett. 70(26), 4118-4121 (1993).ADSGoogle Scholar
  71. 71.
    F. Nihey and K. Nakamura, Aharonov-Bohm effect in antidot structures, Physica B 184(1-4), 398-402(1993).ADSGoogle Scholar
  72. 72.
    H. Silberbauer, Magnetic minibands in lateral semiconductor superlattices, J. Phys.: Condens. Matter 4(36), 7355-7364 (1992).ADSGoogle Scholar
  73. 73.
    H. Silberbauer and U. Rossler, Quantum study of magnetotransport in antidot superlattices, Phys. Rev. B 50(16), 11911-11914 (1994).ADSGoogle Scholar
  74. 74.
    P. Rotter, M. Suhrke, and U. Rossler, Observability of the magnetic band structure of lateral superlattices, Phys. Rev. B 54(7), 4452-4455 (1996).ADSGoogle Scholar
  75. 75.
    M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics. Springer, Berlin (1990).MATHGoogle Scholar
  76. 76.
    G. Hackenbroich and F. von Oppen, Semiclassical theory of transport in antidot lattices, Z. Phys. B 97(2), 157-170 (1995).ADSGoogle Scholar
  77. 77.
    G. Hackenbroich and F. von Oppen, Periodic-orbit theory of quantum transport in antidot lattices, Europhys. Lett. 29(2), 151-156 (1995).ADSGoogle Scholar
  78. 78.
    K. Richter, Semiclassical theory of mesoscopic quantum systems, Springer Tracts Mod. Phys. 163 (2000).Google Scholar
  79. 79.
    A. Yacoby, U. Sivan, C.P. Umbach, and J.M. Hong, Interference and dephasing by electron-electron interaction on length scales shorter than the elastic mean free path, Phys. Rev. Lett. 66(14), 1938-1941 (1991).ADSGoogle Scholar
  80. 80.
    D.K. Ferry, Quantum magnetotransport in lateral surface superlattices, Prog. Quant. Electron. 16(4), 251-317 (1992).ADSGoogle Scholar
  81. 81.
    K. Nakamura, S. Ishizaka, and F. Nihey, Quantum oscillations in artificial impurity lattices, Physica B 197(1-4), 144-150 (1994).ADSGoogle Scholar
  82. 82.
    S. Uryu and T. Ando, Aharonov-Bohm oscillation and periodic orbits in antidot lattices, Physica B 256-258, 388-391 (1998).ADSGoogle Scholar
  83. 83.
    B.L. Al’tshuler, A.G. Aronov, and B.Z. Spivak, Aharonov-Bohm effect in disordered conductors, JETP Lett. 33(2), 94-97 (1981).ADSGoogle Scholar
  84. 84.
    S. Uryu and T. Ando, Localization oscillation in antidot lattices, Physica B 249-251, 308-311 (1998).ADSGoogle Scholar
  85. 85.
    S. Uryu and T. Ando, Numerical study of localization in antidot lattices, Phys. Rev. B 58(16), 10583-10588 (1998).ADSGoogle Scholar
  86. 86.
    H. Silberbauer, P. Rotter, M. Suhrke, and U. Rössler, Quantum transport and quantum chaos in antidot superlattices in a magnetic field, Semicond. Sci. Tech. 9(11S), 1906-1911 (1994).ADSGoogle Scholar
  87. 87.
    S. Ishizaka, F. Nihey, K. Nakamura, J. Sone, and T. Ando, Quantum transport in antidot arrays in magnetic fields, Phys. Rev. B 51(15), 9881-9890 (1995).ADSGoogle Scholar
  88. 88.
    S. Ishizaka, F. Nihey, K. Nakamura, J. Sone, and T. Ando, Numerical studies on quantum transport in antidot arrays in magnetic fields, Jpn. J. Appl. Phys. l 34(8B), 4317-4320 (1995).Google Scholar
  89. 89.
    R.B.S. Oakeshott and A. MacKinnon, On the conductivity of lateral-surface superlattices in magnetic fields, J. Phys.: Condens. Matter 5(37), 6991-6998 (1993).ADSGoogle Scholar
  90. 90.
    R.B.S. Oakeshott and A. MacKinnon, On the conductivity of antidot lattices in magnetic fields, J. Phys.: Condens. Matter 6(8), 1519-1528 (1994).ADSGoogle Scholar
  91. 91.
    S. Uryu and T. Ando, Scattering-matrix formalism for antidot lattices, Jpn. J. Appl. Phys. 1 34(8B), 4295-4297 (1995).Google Scholar
  92. 92.
    S. Uryu and T. Ando, Electronic states in antidot lattices: scattering-matrix formalism, Phys. Rev. B 53(20), 13613-13623 (1996).ADSGoogle Scholar
  93. 93.
    S. Uryu and T. Ando, Aharonov-Bohm type oscillation in antidot lattices, Solid-State Electron. 42(7-8), 1141-1145 (1998).ADSGoogle Scholar
  94. 94.
    S. Uryu and T. Ando, Analysis of antidot lattices with periodic orbit theory, Physica B 227(1-4), 138-140(1996).ADSGoogle Scholar
  95. 95.
    S. Ishizaka and T. Ando, Quantum transport in square and triangular antidot arrays with various periods, Phys. Rev. B 56(23), 15195-15201 (1997).ADSGoogle Scholar
  96. 96.
    O. Steffens, T. Schlösser, P. Rotter, K. Ensslin, M. Suhrke, J.P. Kotthaus, U. Rössler, and M. Holland, From the two-dimensional electron gas to antidot superlattices: magneto-resistance effects in the transition regime, J. Phys.: Condens. Matter 10(17), 3859-3872 (1998).ADSGoogle Scholar
  97. 97.
    R. Onderka, M. Suhrke, and U. Rössler, Anisotropic magnetotransport in a rectangular antidot superlattice: Classical and semiclassical aspects, Phys. Rev. B 62(16), 10918-10922 (2000).ADSGoogle Scholar
  98. 98.
    T. Ando, S. Uryu, S. Ishizaka, and T. Nakanishi, Quantum transport in antidot lattices, Chaos Solitons Fractals 8(7-8), 1057-1083 (1997).ADSGoogle Scholar
  99. 99.
    M. Suhrke and P. Rotter, in Theory of transport properties of semiconductor nanostruc-tures, (eds. E. Schöll), Chapman and Hall, London (1997).Google Scholar
  100. 100.
    A. Lorke, J.P. Kotthaus, and K. Ploog, Localization in GaAs electron-dots and anti-dots, Superlatt. Microstruct. 9(1), 103-106 (1991).ADSGoogle Scholar
  101. 101.
    A. Lorke, I. Jejina, and J.P. Kotthaus, Far-infrared response of lateral superlattices in high magnetic fields, Phys. Rev. B 46(19), 12845-12848 (1992).ADSGoogle Scholar
  102. 102.
    G. Lütjering, Nanostrukturierte Antidot-Systeme: Vom ballistischen Billard zum Metall-Isolator-Übergang, Doctoral Thesis, Fakultät für Physik, Universität Stuttgart, 1996.Google Scholar
  103. 103.
    R.W. Tank and R.B. Stinchcombe, Lateral conductance of perfect and disordered dot lattices, J. Phys.: Condens. Matter 7(5), 849-866 (1995).ADSGoogle Scholar
  104. 104.
    G.M. Gusev, U. Gennser, X. Kleber, D.K. Maude, J.C. Portal, D.I. Lubyshev, P. Basmaji, M.A.P. de Silva, J.C. Rossi, and Yu.V. Nastaushev, Absence of delocalised states in a 2D electron gas in a magnetic field below ωcτ = 1, Solid State Commun. 100(4), 269-273 (1996).ADSGoogle Scholar
  105. 105.
    F. Nihey, M.A. Kastner, and K. Nakamura, Insulator-to-quantum-Hall-liquid transition in an antidot lattice, Phys. Rev. B 55(7), 4085-4088 (1997).ADSGoogle Scholar
  106. 106.
    F. Nihey, K. Nakamura, M.A. Kastner, T. Takamasu, and G. Kido, Insulator-quantum Hall liquid transition in antidot lattices, Physica B 249-251, 302-307 (1998).ADSGoogle Scholar
  107. 107.
    G.M. Gusev, U. Gennser, X. Kleber, D.K. Maude, J.C. Portal, D.I. Lubyshev, P. Basmaji, M.A.P. de Silva, J.C. Rossi, and Yu.N. Nastaushev, Percolation network in a smooth artificial potential, Phys. Rev. B 58(8), 4636-4643 (1998).ADSGoogle Scholar
  108. 108.
    M.V. Budantsev, Z.D. Kvon, A.G. Pogosov, G.M. Gusev, J.C. Portal, D.K. Maude, N.T. Moshegov, and A.I. Toropov, 2D lattice of coupled Sinai billiards: metal or insulator at g « 1 ?, Physica B 256-258, 595-599 (1998).ADSGoogle Scholar
  109. 109.
    G.M. Gusev, Z.D. Kvon, L.V. Litvin, Yu.V. Nastaushev, A.K. Kalagin, and A.I. Toropov, Magnetoresistance of a two-dimensional electron gas in a disordered artificial array of scatterers, Superlatt. Microstruct. 13(2), 263-265 (1993).ADSGoogle Scholar
  110. 110.
    T. Nagao, Magnetotransport through random antidot lattices, J. Phys. Soc. Jpn. 65(8), 2606-2609 (1996).ADSGoogle Scholar
  111. 111.
    D.G. Polyakov, F. Evers, A.D. Mirlin, and P. Wolfle, Quasiclassical magnetotransport in a random array of antidots, Phys. Rev. B 64(20), 205306 (2001).ADSGoogle Scholar
  112. 112.
    F. Evers, A.D. Mirlin, D.G. Polyakov, and P. Wolfle, Magnetotransport in a random array of antidots, Physica E 12(1-4), 260-263 (2002).ADSGoogle Scholar
  113. 113.
    K. Richter and M. Sieber, Semiclassical theory of chaotic quantum transport, Phys. Rev. Lett. 89(20), 206801 (2002).ADSGoogle Scholar
  114. 114.
    I.L. Aleiner and A.I. Larkin, Divergence of classical trajectories and weak localization, Phys. Rev. B 54(20), 14423-14444 (1996).ADSGoogle Scholar
  115. 115.
    T.J. Thornton, M.L. Roukes, A. Scherer, and B.P. Van de Gaag, Boundary scattering in quantum wires, Phys. Rev. Lett. 63(19), 2128-2131 (1989).ADSGoogle Scholar
  116. 116.
    G. Nachtwei, G. Lütjering, D. Weiss, Z.H. Liu, K. von Klitzing, and C.T. Foxon, Breakdown of the quantum Hall effect in periodic and aperiodic antidot arrays, Phys. Rev. B 55(11),6731-6734 (1997).ADSGoogle Scholar
  117. 117.
    G. Nachtwei, Z.H. Liu, I.I. Kaya, G. Lütjering, D. Weiss, K. von Klitzing, and K. Eberl, Nonequilibrium quantum transport in antidot arrays, Phys. Status Solidi B 204(1), 329-334 (1997).ADSGoogle Scholar
  118. 118.
    G. Nachtwei, Z.H. Liu, G. Lütjering, R.R. Gerhardts, D. Weiss, K. von Klitzing, and K. Eberl, Critical currents in quantum Hall conductors with antidot arrays, Phys. Rev. B 57(16), 9937-9944 (1998).ADSGoogle Scholar
  119. 119.
    C.M. Marcus, A.J. Rimberg, R.M. Westervelt, P.F. Hopkins, and A.C. Gossard, Conductance fluctuations and chaotic scattering in ballistic microstructures, Phys. Rev. Lett. 69(3), 506-509 (1992).ADSGoogle Scholar
  120. 120.
    R.A. Jalabert, H.U. Baranger, and A.D. Stone, Conductance fluctuations in the ballistic regime: a probe of quantum chaos?, Phys. Rev. Lett. 65(19), 2442-2445 (1990).ADSGoogle Scholar
  121. 121.
    H.U. Baranger, R.A. Jalabert, and A.D. Stone, Weak localization and integrability in ballistic cavities, Phys. Rev. Lett. 70(25), 3876-3879 (1993).ADSGoogle Scholar
  122. 122.
    H.U. Baranger, R.A. Jalabert, and A.D. Stone, Quantum-chaotic scattering effects in semiconductor microstructures, Chaos 3(4), 665-682 (1993).ADSGoogle Scholar
  123. 123.
    A.M. Chang, H.U. Baranger, L.N. Pfeiffer, and K.W. West, Weak localization in chaotic versus nonchaotic cavities: a striking difference in the line shape, Phys. Rev. Lett. 73(15), 2111-2114 (1994).ADSGoogle Scholar
  124. 124.
    G. Lütjering, K. Richter, D. Weiss, J. Mao, R.H. Blick, K. von Klitzing, and C.T. Foxon, Weak localisation in ballistic cavities filled with antidot arrays, Surf. Sci. 361-362, 709-713 (1996).ADSGoogle Scholar
  125. 125.
    R.D. Ye and S. Tarucha, Internal magnetic focusing in an array of open quantum dots, Jpn. J. Appl. Phys. l 38(1B), 319-321 (1999).ADSGoogle Scholar
  126. 126.
    J.H. Smet, D. Weiss, R.H. Blick, G. Lütjering, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, and G. Weimann, Magnetic focusing of composite fermions through arrays of cavities, Phys. Rev. Lett. 77(11), 2272-2275 (1996).ADSGoogle Scholar
  127. 127.
    J.H. Smet, D. Weiss, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, W. Wegscheider, P.T. Coleridge, Z.W. Wasilewski, and G. Weimann, Enhanced soft-wall effects for composite fermions in magnetic focusing and commensurability experiments, Physica E 1(1-4), 153-159 (1997).ADSGoogle Scholar
  128. 128.
    J.H. Smet, D. Weiss, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, W. Wegscheider, P.T. Coleridge, Z.W. Wasilewski, and G. Weimann, Composite fermions in magnetic focusing and commensurability experiments, Physica B 249-251, 15-22 (1998).ADSGoogle Scholar
  129. 129.
    S. Bhargava, H.-R. Blank, V. Narayanamurti, and H. Kroemer, Fermi-level pinning position at the Au-InAs interface determined using ballistic electron emission microscopy, Appl. Phys. Lett. 70(6), 759-761 (1997).ADSGoogle Scholar
  130. 130.
    M. Behet, S. Nemeth, J. De Boeck, G. Borghs, J. Tummler, J. Woitok, and J. Geurts, Molecular beam epitaxy and characterization of InAs/Al0.2Ga0.8Sb heterostructures for magnetic sensing applications, Semicond. Sci. Tech. 13(4), 428-432 (1998).ADSGoogle Scholar
  131. 131.
    M. Behet, J. Das, J. de Boeck, and G. Borghs, InAs/(Al,Ga)Sb quantum well structures for magnetic sensors, IEEE Trans. Magn. 34(4), 1300-1302 (1998).ADSGoogle Scholar
  132. 132.
    C. Gould, A.S. Sachrajda, Y. Feng, A. Delage, P.J. Kelly, K. Leung, and P.T. Coleridge, Phase coherence and trajectory trapping around one or two independently controllable antidots in quantum wires, Phys. Rev. B 51(16), 11213-11216 (1995).ADSGoogle Scholar
  133. 133.
    A.F Andreev, The thermal conductivity of the intermediate state in superconductors, Sow Phys.—JETP 19(5), 1228-1231 (1964).Google Scholar
  134. 134.
    I. Kosztin, D.L. Maslov, and P.M. Goldbart, Chaos in Andreev billiards, Phys. Rev. Lett. 75(9), 1735-1738 (1995).ADSGoogle Scholar
  135. 135.
    J.A. Melsen, P.W. Brouwer, K.M. Frahm, and C.W.J. Beenakker, Induced superconductivity distinguishes chaotic from integrable billiards, Europhys. Lett. 35(1), 7-12 (1996).ADSGoogle Scholar
  136. 136.
    W. Ihra, M. Leadbeater, J.L. Vega, and K. Richter, Semiclassical theory of integrable and rough Andreev billiards, Eur. Phys. J. B 21(3), 425-435 (2001).MathSciNetADSGoogle Scholar
  137. 137.
    I. Adagideli and P.M. Goldbart, Quantal Andreev billiards: Density of states oscillations and the spectrum-geometry relationship, Phys. Rev. B 65(20), 201306 (2002).ADSGoogle Scholar
  138. 138.
    F. Rahman, T.J. Thornton, R. Huber, L.F. Cohen, W.T. Yuen, and R.A. Stradling, Superconductor-semiconductor interaction effects in mesoscopic hybrid structures, Phys. Rev. B 54(19), 14026-14031 (1996).ADSGoogle Scholar
  139. 139.
    H. Takayanagi and T. Kawakami, Superconducting proximity effect in the native inversion layer on InAs, Phys. Rev. Lett. 54(22), 2449-2452 (1985).ADSGoogle Scholar
  140. 140.
    T. Kawakami and H. Takayanagi, Single-crystal n-InAs coupled Josephson junction, Appl. Phys. Lett. 46(1), 92-94 (1985).ADSGoogle Scholar
  141. 141.
    C. Nguyen, H. Kroemer, and E.L. Hu, Anomalous Andreev conductance in InAs-AlSb quantum well structures with Nb electrodes, Phys. Rev. Lett. 69(19), 2847-2850 (1992).ADSGoogle Scholar
  142. 142.
    A.F. Morpurgo, S. Holl, B.J. van Wees, T.M. Klapwijk, and G. Borghs, Phase conjugated Andreev backscattering in two-dimensional ballistic cavities, Phys. Rev. Lett. 78(13), 2636-2639 (1997).ADSGoogle Scholar
  143. 143.
    J. Eroms, M. Tolkiehn, D. Weiss, U. Rössler, J. De Boeck, and G. Borghs, Com-mensurability effects in Andreev antidot billiards, Europhys. Lett. 58(4), 569-575 (2002).ADSGoogle Scholar
  144. 144.
    J. Eroms, D. Weiss, J. De Boeck, and S. Borghs, Magnetotransport properties of periodic Nb-2DEG structures, Physica C 352(1-4), 131-134 (2001).ADSGoogle Scholar
  145. 145.
    A. Jacobs, R. Kümmel, and H. Plehn, Proximity effect, Andreev reflections, and charge transport in mesoscopic superconducting/semiconducting heterostructures, Superlatt. Microstruct. 25(5-6), 669-681 (1999).ADSGoogle Scholar
  146. 146.
    J. Eroms, M. Tolkiehn, D. Weiss, U. Rössler, J. De Boeck, and S. Borghs, Chaotic motion and suppression of commensurability effects in an Andreev antidot billiard, Physica E 12(1-4), 918-921 (2002).ADSGoogle Scholar
  147. 147.
    A. Chrestin, Y. Matsuyama, and U. Merkt, Evidence for a proximity-induced energy gap in Nb/InAs/Nb junctions, Phys. Rev. B 55(13), 8457-8465 (1997).ADSGoogle Scholar
  148. 148.
    D. Weiss, Elektronen in kiinstlichen Kristallen. Verlag Harri Deutsch, Frankfurt (1994).Google Scholar
  149. 149.
    J. Heremans, B.K. Fuller, C.M. Thrush, and V. Bayot, Temperature dependence of the magnetoresistance of InxGa1-x As antidot lattices, Phys. Rev. B 54(4), 2685-2690 (1996).ADSGoogle Scholar
  150. 150.
    N. A. Mortensen, K. Flensberg, and A.-P. Jauho, Angle dependence of Andreev scattering at semiconductor-superconductor interfaces, Phys. Rev. B 59(15), 10176-10182 (1999).ADSGoogle Scholar
  151. 151.
    J. Nitta, T. Akazaki, and H. Takayanagi, Magnetic-field dependence of Andreev reflection in a clean Nb-InAs-Nb junction, Phys. Rev. B 49(5), 3659-3662 (1994).ADSGoogle Scholar
  152. 152.
    P.C. van Son, H. van Kempen, and P. Wyder, New method to study the proximity effect at the normal-metal-superconductor interface, Phys. Rev. Lett. 59(19), 2226-2228 (1987).ADSGoogle Scholar
  153. 153.
    P.C. van Son, H. van Kempen, and P. Wyder, Andreev reflection and geometrical resonance effects for a gradual variation of the pair potential near the normal-metal-superconductor interface, Phys. Rev. B 37(10), 5015-5023 (1988).ADSGoogle Scholar
  154. 154.
    M. Tornow, D. Weiss, K. von Klitzing, K. Eberl, D.J. Bergman, and Y.M. Strelniker, Anisotropic magnetoresistance of a classical antidot array, Phys. Rev. Lett. 77(1), 147-150 (1996).ADSGoogle Scholar
  155. 155.
    K. Kern, D. Heitmann, P. Grambow, Y.H. Zhang, and K. Ploog, Collective excitations in antidots, Phys. Rev. Lett. 66(12), 1618-1621 (1991).ADSGoogle Scholar
  156. 156.
    D. Heitmann, K. Kern, T. Demel, P. Grambow, K. Ploog, and Y.H. Zhang, Spectroscopy of quantum dots and antidots, Surf. Sci. 267(1-3), 245-252 (1992).ADSGoogle Scholar
  157. 157.
    Y. Zhao, D.C. Tsui, M. Santos, M. Shayegan, R.A. Ghanbari, D.A. Antoniadis, and H.I. Smith, Magneto-optical absorption in a two-dimensional electron grid, Appl. Phys. Lett. 60(12), 1510-1512(1992).ADSGoogle Scholar
  158. 158.
    D. Heitmann, Far infrared spectroscopy of quantum-dots and antidot arrays, Physica B 212(3), 201-206(1995).ADSGoogle Scholar
  159. 159.
    K. Bollweg, T. Kurth, D. Heitmann, E. Vasiliadou, K. Eberi, and H. Brugger, Circular polarization of far-infrared modes in antidot arrays, Phys. Rev. B 52(11), 8379-8383 (1995).ADSGoogle Scholar
  160. 160.
    A. Huber, I. Jejina, H. Lorenz, J.P. Kotthaus, S. Bakker, and T.M. Klapwijk, Far-infrared excitations in antidot systems on silicon MOS structures, Semicond. Sci. Tech. 10(3), 365-368 (1995).ADSGoogle Scholar
  161. 161.
    T. Deruelle, Y. Guldner, and B. Meurer, Collective excitations in tunable antidot arrays, Solid State Commun. 96(11), 877-880 (1995).ADSGoogle Scholar
  162. 162.
    M. Hochgrafe, B.P. van Zyl, C. Heyn, D. Heitmann, and E. Zaremba, Far-infrared excitations in rectangular antidot arrays, Phys. Rev. B 63(3), 033316 (2001).ADSGoogle Scholar
  163. 163.
    P.D. Ye, L.W. Engel, D.C. Tsui, J.A. Simmons, J.R. Wendt, G.A. Vawter, and J.L. Reno, High magnetic-field microwave conductivity of two-dimensional electrons in an array of antidots, Phys. Rev. B 65(12), 121305 (2002).ADSGoogle Scholar
  164. 164.
    D. Huang and G. Gumbs, Magnetoplasmon excitations in a two-dimensional square array of antidots, Phys. Rev. B 47(15), 9597-9604 (1993).ADSGoogle Scholar
  165. 165.
    G.Y Wu and Y. Zhao, Magnetoplasmons and FIR response of an antidot array, Surf. Sci. 305(1-3), 601-605 (1994).ADSGoogle Scholar
  166. 166.
    V. Fessatidis, H.L. Cui, and O. Kuhn, Hydrodynamical theory of magnetoplasma excitations in an antidot system, Phys. Rev. B 47(11), 6598-6602 (1993).ADSGoogle Scholar
  167. 167.
    S.A. Mikhailov and V.A. Volkov, Theory of electromagnetic response and collective excitations in antidots, Phys. Rev. B 52(24), 17260-17268 (1995).ADSGoogle Scholar
  168. 168.
    A.V. Chaplik, Magnetoexcitons in quantum rings and in antidots, JETP Lett. 62(11), 900-904 (1995).ADSGoogle Scholar
  169. 169.
    S.A. Mikhailov, Theory of electromagnetic response and collective excitations of a square lattice of antidots, Phys. Rev. B 54(20), R14293-14296 (1996).ADSGoogle Scholar
  170. 170.
    V. Gudmundsson and S.I. Erlingsson, presented at the 1997 Advanced Workshop on Frontiers in Electronics, WOFE’97 Proceedings, New York, NY, USA (1997) (unpublished).Google Scholar
  171. 171.
    V. Gudmundsson, Far-infrared-active collective modes of short-period arrays of quantum dots and antidots, Phys. Rev. B 57(7), 3989-3993 (1998).ADSGoogle Scholar
  172. 172.
    A. Emperador, M. Pi, M. Barranco, E. Lipparini, and L. Serra, Far-infrared excitations in an antidot at finite magnetic fields, Jpn. J. Appl. Phys. 1 40(2A), 518-524 (2001).Google Scholar
  173. 173.
    E. Vasiliadou, R. Fleischmann, D. Weiss, D. Heitmann, K. von Klitzing, T. Geisel, R. Bergmann, H. Schweizer, and C.T. Foxon, Cyclotron-resonance anomalies in an anti-dot array measured by microwave photoconductivity, Phys. Rev. B 52(12), R8658-8661 (1995).ADSGoogle Scholar
  174. 174.
    B.G.L. Jager, S. Wimmer, A. Lorke, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Edge and bulk effects in Terahertz photoconductivity of an antidot superlattice, Phys. Rev. B 63(4), 045315 (2001).ADSGoogle Scholar
  175. 175.
    D.G. Polyakov, F. Evers, and I.V. Gornyi, Cyclotron resonance in antidot arrays, Phys. Rev. B 65(12), 125326(2002).ADSGoogle Scholar
  176. 176.
    G.R. Nash, S.J. Bending, M. Riek, and K. Eberl, Commensurate and rosette-shaped electron orbits probed by surface acoustic wave attenuation, Phys. Rev. B 63(11), 113316 (2001).ADSGoogle Scholar
  177. 177.
    I.V. Kukushkin, D. Weiss, G. Lütjering, R. Bergmann, H. Schweizer, K. von Klitzing, K. Eberl, P. Rotter, M. Suhrke, and U. Rössler, Manifestation of commensurate orbits in the magnetoluminescence spectrum of electrons in antidot arrays, Phys. Rev. Lett. 79(9), 1722-1725(1997).ADSGoogle Scholar
  178. 178.
    A. Lorke, S. Wimmer, B. Jager, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Far-infrared and transport properties of antidot arrays with broken symmetry, Physica B 249-251, 312-316 (1998).ADSGoogle Scholar
  179. 179.
    J.H. Smet, in Composite Fermions (eds. O. Heinonen) World Scientific Publishing, Singapore, 443-491 (1998).Google Scholar
  180. 180.
    J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63(2), 199-202 (1989).ADSGoogle Scholar
  181. 181.
    B.I. Halperin, P.A. Lee, and N. Read, Theory of the half-filled Landau level, Phys. Rev. B 47(12), 7312-7343 (1993).ADSGoogle Scholar
  182. 182.
    O. Heinonen, Composite Fermions: A Unified View of the Quantum Hall Regime. World Scientific Publishing Co., Singapore (1998).Google Scholar
  183. 183.
    R. Fleischmann, T. Geisel, C. Holzknecht, and R. Ketzmerick, Nonlinear dynamics of composite fermions in nanostructures, Europhys. Lett. 36(3), 167-172 (1996).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • D. Weiss
    • 1
  • K. Richter
    • 1
  • J. Eroms
    • 1
  1. 1.Universität RegensburgRegensburgGermany

Personalised recommendations