Skip to main content

Classical and Quantum Transport in Antidot Arrays

  • Chapter
Electron Transport in Quantum Dots
  • 542 Accesses

Abstract

The story of solid state physics is the story of electrons in periodic potentials caused by the periodic arrangement of atoms in crystalline solids. It was early recognized that an additionally imposed periodic potential can significantly modify the solid’s properties [1]. A major breakthrough in this respect was the concept of bandstructure engineering introduced by L. Esaki and R. Tsu [2,3]. The advent of molecular beam epitaxy with the possibility to grow semiconductor crystals atom by atom (see, e.g. [4]) allowed one not only to fabricate such one-dimensional superlattices superimposed upon the three-dimensional crystallographic lattice but also to realize two-dimensional electron systems (2DES) of superior quality [5]. Two-dimensional electron systems offered a wealth of new phenomena and are still the subject of current research. Prominent examples of effects based on the reduction of dimensionality for conduction electrons (or holes), are the quantum Hall effect (QHE) [6] and the fractional quantum Hall effect (FQHE) [7]. New phenomena were also expected for a one- or two-dimensional (2D) periodic potential imposed upon a two-dimensional electron system [8,9]. By using nanolithographic techniques it is possible these days to impress periodic potentials of different strength, period and shape upon high mobility two-dimensional electron systems such that the electron mean free path l e and phase coherence lenght l ø is much longer than the period of the periodic potentials. Two different types of potential landscapes are displayed in Fig. 5.1 showing weak and strong 2D-periodic potentials imposed upon a two-dimensional electron system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.V. Keldish, Effect of ultrasonics on the electron spectrum of crystals, Sov. Phys. Solid State 4, 1658-1659 (1963).

    Google Scholar 

  2. L. Esaki and R. Tsu, Superlattice and negative conductivity in semiconductors, IBM Res. Note RC-2418 (1969).

    Google Scholar 

  3. L. Esaki and R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Dev. 14(1), 61-65 (1970).

    Google Scholar 

  4. A. Cho, Molecular Beam Epitaxy. AIP Press, Woodbury (1994).

    Google Scholar 

  5. R. Dingle, H.L. Stormer, A.C. Gossard, and W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices, Appl. Phys. Lett. 33(7), 665-667(1978).

    ADS  Google Scholar 

  6. K. von Klitzing, G. Dorda, and M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45(6), 494-497(1980).

    ADS  Google Scholar 

  7. D.C. Tsui, H.L. Störmer, and A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. 48(22), 1559-1562 (1982).

    ADS  Google Scholar 

  8. H. Sakaki, K. Wagatsuma, J. Hamasaki, and S. Saito, Possible applications of surface-corrugated quantum thin films to negative-resistance devices, Thin Solid Films 36(2), 497-501 (1976).

    ADS  Google Scholar 

  9. R.K. Reich, R.O. Grondin, D.K. Ferry, and G.J. Iafrate, Transport in surface superlattices, Phys. Lett. A 91A (1), 28-30 (1982).

    ADS  Google Scholar 

  10. C. Albrecht, J.H. Smet, D. Weiss, K. von Klitzing, R. Hennig, M. Langenbuch, M. Suhrke, U. Rössler, V. Umansky, and H. Schweizer, Fermiology of two-dimensional lateral superlattices, Phys. Rev. Lett. 83(11), 2234-2237 (1999).

    ADS  Google Scholar 

  11. R.A. Deutschmann, W. Wegscheider, M. Rother, M. Bichler, G. Abstreiter, C. Albrecht, and J.H. Smet, Quantum interference in artificial band structures, Phys. Rev. Lett. 86(9), 1857-1860(2001).

    ADS  Google Scholar 

  12. D. Weiss, K. von Klitzing, K. Ploog, and G. Weimann, Magnetoresistance oscillations in a two-dimensional electron gas induced by a submicrometer periodic potential, Europhys. Lett. 8(2), 179-184 (1989).

    ADS  Google Scholar 

  13. R.R. Gerhardts, D. Weiss, and K. von Klitzing, Novel magnetoresistance oscillations in a periodically modulated two-dimensional electron gas, Phys. Rev. Lett. 62(10), 1173-1176 (1989).

    ADS  Google Scholar 

  14. R. W. Winkler, J.P. Kotthaus, and K. Ploog, Landau-band conductivity in a two-dimensional electron system modulated by an artificial one-dimensional superlattice potential, Phys. Rev. Lett. 62(10), 1177-1180 (1989).

    ADS  Google Scholar 

  15. C.W.J. Beenakker, Guiding-center-drift resonance in a periodically modulated two-dimensional electron gas, Phys. Rev. Lett. 62(17), 2020-2023 (1989).

    ADS  Google Scholar 

  16. K. Ensslin and P.M. Petroff, Magnetotransport through an antidot lattice in GaAs-Alx Ga1_x As heterostructures, Phys. Rev. B 41(17), 12307-12310 (1990).

    ADS  Google Scholar 

  17. R. Fleischmann, T. Geisel, and R. Ketzmerick, Magnetoresistance due to chaos and nonlinear resonances in lateral surface superlattices, Phys. Rev. Lett. 68(9), 1367-1370 (1992).

    ADS  Google Scholar 

  18. N.I. Chernov, G.L. Eyink, J.L. Lebowitz, and Y.G. Sinai, Derivation of Ohm’s law in a deterministic mechanical model, Phys. Rev. Lett. 70 (1993).

    Google Scholar 

  19. A. Kuzmany and H. Spohn, Magnetotransport in the two-dimensional Lorentz gas, Phys. Rev. E 57(1998).

    Google Scholar 

  20. W. Kang, H.L. Störmer, L.N. Pfeiffer, K.W. Baldwin, and K.W. West, How real are composite fermions?, Phys. Rev. Lett. 71(23), 3850-3853 (1993).

    ADS  Google Scholar 

  21. J.H. Smet, D. Weiss, K. von Klitzing, P.T. Coleridge, Z.W. Wasilewski, R. Bergmann, H. Schweizer, and A. Scherer, Composite fermions in periodic and random antidot lattices, Phys. Rev. B 56(7), 3598-3601 (1997).

    ADS  Google Scholar 

  22. M.V. Berry, Quantizing a classically ergodic system: Sinai’s billiard and the KKR method, Ann. Phys. 131(1), 163-216 (1981).

    ADS  Google Scholar 

  23. T. Ando, A.B. Fowler, and F. Stern, Electronic properties of two-dimensional systems, Rev. Mod. Phys. 54(2), 437-672 (1982).

    ADS  Google Scholar 

  24. D. Weiss, P. Grambow, K. von Klitzing, A. Menschig, and G. Weimann, Fabrication and characterization of deep mesa etched ‘anti’-dot superlattices in GaAs-AlGaAs heterostructures, Appl. Phys. Lett. 58(25), 2960-2962 (1991).

    ADS  Google Scholar 

  25. D. Weiss, M.L. Roukes, A. Menschig, P. Grambow, K. von Klitzing, and G. Weimann, Electron pinball and commensurate orbits in a periodic array of scatterers, Phys. Rev. Lett. 66(21), 2790-2793 (1991).

    ADS  Google Scholar 

  26. G. Müller, D. Weiss, K. von Klitzing, K. Ploog, H. Nickel, W. Schlapp, and R. Losch, Confinement-potential tuning: from nonlocal to local transport, Phys. Rev. B 46(7), 4336-4339(1992).

    ADS  Google Scholar 

  27. P.M. Petroff, Y.J. Li, T.J. Li, Z. Xu, W. Beinstingl, S. Sasa, and K. Ensslin, Nanostructures processing by focused ion beam implantation, J. Vac. Sci. Technol. B 9(6), 3074-3078 (1991).

    Google Scholar 

  28. G.M. Sundaram, N.J. Bassom, R.J. Nicholas, G.J. Rees, P.J. Heard, P.D. Prewett, J.E.F. Frost, G.A.C. Jones, D.C. Peacock, and D.A. Ritchie, Magnetoconductivity in a mesoscopic antidot array, Phys. Rev. B 47(12), 7348-7353 (1993).

    ADS  Google Scholar 

  29. A. Lorke, J.P. Kotthaus, and K. Ploog, Magnetotransport in two-dimensional lateral superlattices, Phys. Rev. B 44(7), 3447-3450 (1991).

    ADS  Google Scholar 

  30. G. Berthold, T. Suski, J. Smoliner, R. Maschek, E. Gornik, G. Bohm, and G. Weimann, Pressure- and gate voltage-induced transitions from lateral surface superlattice to antidot systems, Semicond. Sci. Tech. 8(8), 1512-1516 (1993).

    ADS  Google Scholar 

  31. G. Lütjering, D. Weiss, R.W. Tank, K. von Klitzing, A. Hulsmann, T. Jakobus, and K. Kohler, Metal-non-metal transition at the crossover from antidots to quantum dots, Surf. Sci. 361-362, 925-929 (1996).

    ADS  Google Scholar 

  32. A.S. Sachrajda, Y. Feng, R.P. Taylor, G. Kirczenow, L. Henning, J. Wang, P. Zawadzki, and P.T. Coleridge, Magnetoconductance of a nanoscale antidot, Phys. Rev. B 50(15), 10856-10863 (1994).

    ADS  Google Scholar 

  33. M. Wendel, S. Kuhn, H. Lorenz, J.P. Kotthaus, and M. Holland, Nanolithography with an atomic force microscope for integrated fabrication of quantum electronic devices, Appl. Phys. Lett. 65(14), 1775-1777 (1994).

    ADS  Google Scholar 

  34. A. Dorn, M. Sigrist, A. Fuhrer, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, and M. Bichler, Electronic properties of antidot lattices fabricated by atomic force lithography, Appl. Phys. Lett. 80(2), 252-254 (2002).

    ADS  Google Scholar 

  35. R.A. Deutsehmann, C. Stocken, W. Wegscheider, M. Bichler, and G. Abstreiter, Com-mensurability effects in lateral surface-doped superlattices, Appl. Phys. Lett. 78(15), 2175-2177(2001).

    ADS  Google Scholar 

  36. M.L. Roukes, A. Scherer, S.J. Allen, Jr., H.G. Craighead, Jr., R.M. Ruthen, E.D. Beebe, and J.P. Harbison, Quenching of the Hall effect in a one-dimensional wire, Phys. Rev. Lett. 59(26), 3011-3014 (1987).

    ADS  Google Scholar 

  37. H. Fang and P.J. Stiles, Novel magnetoresistance oscillations in a two-dimensional superlattice potential, Phys. Rev. B 41(14), 10171-10174 (1990).

    ADS  Google Scholar 

  38. T. Yamashiro, J. Takahara, Y. Takagaki, K. Gamo, S. Namba, S. Takaoka, and K. Murase, Commensurate classical orbits on triangular lattices of anti-dots, Solid State Commun. 79(11), 885-887 (1991).

    ADS  Google Scholar 

  39. J. Takahara, Y. Takagaki, K. Gamo, S. Namba, S. Takaoka, and K. Murase, Fabrication and transport properties of anti-dot triangle lattices, Microelectron. Eng. 17(1-4), 509-512 (1992).

    Google Scholar 

  40. J. Takahara, K. Gamo, S. Namba, S. Takaoka, and K. Murase, Transport properties in hexagonal arrays of antidots with different carrier densities, Jpn. J. Appl. Phys. l 31 (12A), 3786-3790 (1992).

    ADS  Google Scholar 

  41. F. Nihey, S.W. Hwang, and K. Nakamura, Observation of large h/2e oscillations in semiconductor antidot lattices, Phys. Rev. B 51(7), 4649-4652 (1995).

    ADS  Google Scholar 

  42. K. Ensslin, S. Sasa, T. Deruelle, and P.M. Petroff, Anisotropic electron transport through a rectangular antidot lattice, Surf. Sci. 263(1-3), 319-323 (1992).

    ADS  Google Scholar 

  43. R. Schuster, K. Ensslin, J.P. Kotthaus, M. Holland, and C. Stanley, Selective probing of ballistic electron orbits in rectangular antidot lattices, Phys. Rev. B 47(11), 6843-6846 (1993).

    ADS  Google Scholar 

  44. J. Takahara, A. Nomura, K. Gamo, S. Takaoka, K. Murase, and H. Ahmed, Magnetotrans-port in hexagonal and rectangular antidot lattices, Jpn. J. Appl. Phys. l 34(8B), 4325-4328 (1995).

    ADS  Google Scholar 

  45. K. Tsukagoshi, M. Haraguchi, K. Oto, S. Takaoka, K. Murase, and K. Gamo, Current-direction-dependent commensurate oscillations in GaAs/AlGaAs antidot superlattice, Jpn. J. Appl. Phys. l 34(8B), 4335-4337 (1995).

    ADS  Google Scholar 

  46. S. Lüthi, T. Vancura, K. Ensslin, R. Schuster, G. Bohm, and W. Klein, Electron trajectories in rectangular antidot superlattices, Phys. Rev. B 55(19), 13088-13092 (1997).

    ADS  Google Scholar 

  47. G.M. Gusev, P. Basmaji, D.I. Lubyshev, L.V. Litvin, Yu.V. Nastaushev, and V.V. Preobrazhenskii, Magneto-oscillations in a two-dimensional electron gas with a Penrose lattice of artificial scatterers, Phys. Rev. B 47(15), 9928-9930 (1993).

    ADS  Google Scholar 

  48. G.M. Gusev, P. Basmaji, Z.D. Kvon, L.V. Litvin, A.I. Toropov, and Yu.V. Nastaushev, Negative differential magnetoresistance and commensurability oscillations of two-dimensional electrons in a disordered array of antidots, J. Phys.: Condens. Matter 6(1), 73-78 (1994).

    ADS  Google Scholar 

  49. K. Tsukagoshi, S. Wakayama, K. Oto, S. Takaoka, K. Murase, and K. Gamo, Transport properties in artificial lateral superlattice, Superlatt. Microstruct. 16(3), 295-301 (1994).

    Google Scholar 

  50. K. Tsukagoshi, S. Wakayama, K. Oto, S. Takaoka, K. Murase, and K. Gamo, Magneto-transport through disordered and anisotropic antidot lattices in GaAs/Alx/Ga1_x As heterostructures, Phys. Rev. B 52(11), 8344-8347 (1995).

    ADS  Google Scholar 

  51. O. Yevtushenko, G. Lütjering, D. Weiss, and K. Richter, Weak localization in antidot arrays: signature of classical chaos, Phys. Rev. Lett. 84(3), 542-545 (2000).

    ADS  Google Scholar 

  52. G.M. Gusev, X. Kleber, U. Gennser, D.K. Maude, J.C. Portal, D.I. Lubyshev, P. Basmaji, M.De.P.A. Silva, J.C. Rossi, Y.V. Nastaushev, and M.R. Baklanov, Oscillation of the scattering time in a 2D electron system with oval antidots, Solid-State Electron. 40(1-8), 441-446(1996).

    Google Scholar 

  53. T. Azuma and T. Osada, Antidot shape dependence of the commensurability oscillation of magnetoresistance in two-dimensional antidot arrays, Physica B 256-258, 397-400 (1998).

    ADS  Google Scholar 

  54. S. de Haan, A. Lorke, R. Hennig, M. Suhrke, W. Wegscheider, and M. Bichler, Magneto-transport properties of arrays of cross-shaped antidots, Phys. Rev. B 60(12), 8845-8848 (1999).

    ADS  Google Scholar 

  55. D. Többen, M. Holzmann, G. Abstreiter, A. Kriele, H. Lorenz, J.P. Kotthaus, F. Schaffler, Y.H. Xie, P.J. Silverman, and D. Monroe, Antidot superlattices in two-dimensional hole gases confined in strained germanium layers, Semicond. Sci. Tech. 10(10), 1413-1417 (1995).

    ADS  Google Scholar 

  56. M. Holzmann, D. Többen, and G. Abstreiter, Transport in silicon/germanium nanostructures, Appl. Surf. Sci. 102, 230-236 (1996).

    ADS  Google Scholar 

  57. S. Hameau, Y. Guldner, R. Ferreira, S. Zanier, G. Faini, E. Cambril, and Y. Campidelli, Transition from an antidot to a dot array in etched Si/SiGe heterostructures: Influence of the etch depth, Phys. Rev. B 60(23), 15965-15969 (1999).

    ADS  Google Scholar 

  58. S.-I. Osako, T. Sugihara, Y. Yamamoto, T. Maemoto, S. Sasa, M. Inoue, and C. Hamaguchi, Quantum anti-dot arrays and quantum wire transistors fabricated on InAs/Al0.5 Ga0.5Sb heterostructures, Semicond. Sci. Tech. 11(4), 571-575 (1996).

    ADS  Google Scholar 

  59. J. Eroms, M. Zitzlsperger, D. Weiss, J.H. Smet, C. Albrecht, R. Fleischmann, M. Behet, J. De Boeck, and G. Borghs, Skipping orbits and enhanced resistivity in large-diameter InAs/GaSb antidot lattices, Phys. Rev. B 59(12), R7829-7832 (1999).

    ADS  Google Scholar 

  60. J. Eroms, M. Zitzlsperger, D. Weiss, J.H. Smet, C. Albrecht, R. Fleischmann, M. Behet, J. De Boeck, and G. Borghs, Magnetotransport in large diameter InAs/GaSb antidot lattices, Physica B 256-258, 409-412 (1998).

    ADS  Google Scholar 

  61. E.M. Baskin, G.M. Gusev, Z.D. Kvon, A.G. Pogosov, and M. V. Entin, Stochastic dynamics of 2D electrons in a periodic lattice of antidots, JETP Lett. 55(11), 678-682 (1992).

    ADS  Google Scholar 

  62. R. Schuster, G. Ernst, K. Ensslin, M. Entin, M. Holland, G. Bohm, and W. Klein, Experimental characterization of electron trajectories in antidot lattices, Phys. Rev. B 50(11), 8090-8093(1994).

    ADS  Google Scholar 

  63. D. Weiss, G. Lütjering, and K. Richter, Chaotic electron motion in macroscopic and mesoscopic antidot lattices, Chaos Solitons Fractals 8(7-8), 1337-1357 (1997).

    ADS  Google Scholar 

  64. K. Tsukagoshi, T. Nagao, M. Haraguchi, S. Takaoka, K. Murase, and K. Gamo, Com-mensurability oscillations by runaway and pinned electrons, Superlatt. Microstruct. 23(2),493-496(1998).

    ADS  Google Scholar 

  65. R. Fleischmann, T. Geisel, and R. Ketzmeriek, Quenched and negative Hall effect in periodic media: Application to antidot superlattices, Europhys. Lett. 25(3), 219-224 (1994).

    ADS  Google Scholar 

  66. K. Richter, Phase coherence effects in antidot lattices: a semiclassical approach to bulk conductivity, Europhys. Lett. 29(1), 7-12 (1995).

    ADS  Google Scholar 

  67. Wenchang Lu, Theoretical study on commensurability oscillation in anisotropic antidot lattices, Phys. Rev. B 54(11), 8049-8056 (1996).

    Google Scholar 

  68. S. Ishizaka and T. Ando, Detailed analysis of the commensurability peak in antidot arrays with various periods, Phys. Rev. B 55(24), 16331-16338 (1997).

    ADS  Google Scholar 

  69. T. Ando, S. Uryu, and S. Ishizaka, Chaos and quantum transport in antidot lattices, Jpn. J. Appl. Phys. l 38(1B), 308-314 (1999).

    ADS  Google Scholar 

  70. D. Weiss, K. Richter, A. Menschig, R. Bergmann, H. Schweizer, K. von Klitzing, and G. Weimann, Quantized periodic orbits in large antidot arrays, Phys. Rev. Lett. 70(26), 4118-4121 (1993).

    ADS  Google Scholar 

  71. F. Nihey and K. Nakamura, Aharonov-Bohm effect in antidot structures, Physica B 184(1-4), 398-402(1993).

    ADS  Google Scholar 

  72. H. Silberbauer, Magnetic minibands in lateral semiconductor superlattices, J. Phys.: Condens. Matter 4(36), 7355-7364 (1992).

    ADS  Google Scholar 

  73. H. Silberbauer and U. Rossler, Quantum study of magnetotransport in antidot superlattices, Phys. Rev. B 50(16), 11911-11914 (1994).

    ADS  Google Scholar 

  74. P. Rotter, M. Suhrke, and U. Rossler, Observability of the magnetic band structure of lateral superlattices, Phys. Rev. B 54(7), 4452-4455 (1996).

    ADS  Google Scholar 

  75. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics. Springer, Berlin (1990).

    MATH  Google Scholar 

  76. G. Hackenbroich and F. von Oppen, Semiclassical theory of transport in antidot lattices, Z. Phys. B 97(2), 157-170 (1995).

    ADS  Google Scholar 

  77. G. Hackenbroich and F. von Oppen, Periodic-orbit theory of quantum transport in antidot lattices, Europhys. Lett. 29(2), 151-156 (1995).

    ADS  Google Scholar 

  78. K. Richter, Semiclassical theory of mesoscopic quantum systems, Springer Tracts Mod. Phys. 163 (2000).

    Google Scholar 

  79. A. Yacoby, U. Sivan, C.P. Umbach, and J.M. Hong, Interference and dephasing by electron-electron interaction on length scales shorter than the elastic mean free path, Phys. Rev. Lett. 66(14), 1938-1941 (1991).

    ADS  Google Scholar 

  80. D.K. Ferry, Quantum magnetotransport in lateral surface superlattices, Prog. Quant. Electron. 16(4), 251-317 (1992).

    ADS  Google Scholar 

  81. K. Nakamura, S. Ishizaka, and F. Nihey, Quantum oscillations in artificial impurity lattices, Physica B 197(1-4), 144-150 (1994).

    ADS  Google Scholar 

  82. S. Uryu and T. Ando, Aharonov-Bohm oscillation and periodic orbits in antidot lattices, Physica B 256-258, 388-391 (1998).

    ADS  Google Scholar 

  83. B.L. Al’tshuler, A.G. Aronov, and B.Z. Spivak, Aharonov-Bohm effect in disordered conductors, JETP Lett. 33(2), 94-97 (1981).

    ADS  Google Scholar 

  84. S. Uryu and T. Ando, Localization oscillation in antidot lattices, Physica B 249-251, 308-311 (1998).

    ADS  Google Scholar 

  85. S. Uryu and T. Ando, Numerical study of localization in antidot lattices, Phys. Rev. B 58(16), 10583-10588 (1998).

    ADS  Google Scholar 

  86. H. Silberbauer, P. Rotter, M. Suhrke, and U. Rössler, Quantum transport and quantum chaos in antidot superlattices in a magnetic field, Semicond. Sci. Tech. 9(11S), 1906-1911 (1994).

    ADS  Google Scholar 

  87. S. Ishizaka, F. Nihey, K. Nakamura, J. Sone, and T. Ando, Quantum transport in antidot arrays in magnetic fields, Phys. Rev. B 51(15), 9881-9890 (1995).

    ADS  Google Scholar 

  88. S. Ishizaka, F. Nihey, K. Nakamura, J. Sone, and T. Ando, Numerical studies on quantum transport in antidot arrays in magnetic fields, Jpn. J. Appl. Phys. l 34(8B), 4317-4320 (1995).

    Google Scholar 

  89. R.B.S. Oakeshott and A. MacKinnon, On the conductivity of lateral-surface superlattices in magnetic fields, J. Phys.: Condens. Matter 5(37), 6991-6998 (1993).

    ADS  Google Scholar 

  90. R.B.S. Oakeshott and A. MacKinnon, On the conductivity of antidot lattices in magnetic fields, J. Phys.: Condens. Matter 6(8), 1519-1528 (1994).

    ADS  Google Scholar 

  91. S. Uryu and T. Ando, Scattering-matrix formalism for antidot lattices, Jpn. J. Appl. Phys. 1 34(8B), 4295-4297 (1995).

    Google Scholar 

  92. S. Uryu and T. Ando, Electronic states in antidot lattices: scattering-matrix formalism, Phys. Rev. B 53(20), 13613-13623 (1996).

    ADS  Google Scholar 

  93. S. Uryu and T. Ando, Aharonov-Bohm type oscillation in antidot lattices, Solid-State Electron. 42(7-8), 1141-1145 (1998).

    ADS  Google Scholar 

  94. S. Uryu and T. Ando, Analysis of antidot lattices with periodic orbit theory, Physica B 227(1-4), 138-140(1996).

    ADS  Google Scholar 

  95. S. Ishizaka and T. Ando, Quantum transport in square and triangular antidot arrays with various periods, Phys. Rev. B 56(23), 15195-15201 (1997).

    ADS  Google Scholar 

  96. O. Steffens, T. Schlösser, P. Rotter, K. Ensslin, M. Suhrke, J.P. Kotthaus, U. Rössler, and M. Holland, From the two-dimensional electron gas to antidot superlattices: magneto-resistance effects in the transition regime, J. Phys.: Condens. Matter 10(17), 3859-3872 (1998).

    ADS  Google Scholar 

  97. R. Onderka, M. Suhrke, and U. Rössler, Anisotropic magnetotransport in a rectangular antidot superlattice: Classical and semiclassical aspects, Phys. Rev. B 62(16), 10918-10922 (2000).

    ADS  Google Scholar 

  98. T. Ando, S. Uryu, S. Ishizaka, and T. Nakanishi, Quantum transport in antidot lattices, Chaos Solitons Fractals 8(7-8), 1057-1083 (1997).

    ADS  Google Scholar 

  99. M. Suhrke and P. Rotter, in Theory of transport properties of semiconductor nanostruc-tures, (eds. E. Schöll), Chapman and Hall, London (1997).

    Google Scholar 

  100. A. Lorke, J.P. Kotthaus, and K. Ploog, Localization in GaAs electron-dots and anti-dots, Superlatt. Microstruct. 9(1), 103-106 (1991).

    ADS  Google Scholar 

  101. A. Lorke, I. Jejina, and J.P. Kotthaus, Far-infrared response of lateral superlattices in high magnetic fields, Phys. Rev. B 46(19), 12845-12848 (1992).

    ADS  Google Scholar 

  102. G. Lütjering, Nanostrukturierte Antidot-Systeme: Vom ballistischen Billard zum Metall-Isolator-Übergang, Doctoral Thesis, Fakultät für Physik, Universität Stuttgart, 1996.

    Google Scholar 

  103. R.W. Tank and R.B. Stinchcombe, Lateral conductance of perfect and disordered dot lattices, J. Phys.: Condens. Matter 7(5), 849-866 (1995).

    ADS  Google Scholar 

  104. G.M. Gusev, U. Gennser, X. Kleber, D.K. Maude, J.C. Portal, D.I. Lubyshev, P. Basmaji, M.A.P. de Silva, J.C. Rossi, and Yu.V. Nastaushev, Absence of delocalised states in a 2D electron gas in a magnetic field below ωcτ = 1, Solid State Commun. 100(4), 269-273 (1996).

    ADS  Google Scholar 

  105. F. Nihey, M.A. Kastner, and K. Nakamura, Insulator-to-quantum-Hall-liquid transition in an antidot lattice, Phys. Rev. B 55(7), 4085-4088 (1997).

    ADS  Google Scholar 

  106. F. Nihey, K. Nakamura, M.A. Kastner, T. Takamasu, and G. Kido, Insulator-quantum Hall liquid transition in antidot lattices, Physica B 249-251, 302-307 (1998).

    ADS  Google Scholar 

  107. G.M. Gusev, U. Gennser, X. Kleber, D.K. Maude, J.C. Portal, D.I. Lubyshev, P. Basmaji, M.A.P. de Silva, J.C. Rossi, and Yu.N. Nastaushev, Percolation network in a smooth artificial potential, Phys. Rev. B 58(8), 4636-4643 (1998).

    ADS  Google Scholar 

  108. M.V. Budantsev, Z.D. Kvon, A.G. Pogosov, G.M. Gusev, J.C. Portal, D.K. Maude, N.T. Moshegov, and A.I. Toropov, 2D lattice of coupled Sinai billiards: metal or insulator at g « 1 ?, Physica B 256-258, 595-599 (1998).

    ADS  Google Scholar 

  109. G.M. Gusev, Z.D. Kvon, L.V. Litvin, Yu.V. Nastaushev, A.K. Kalagin, and A.I. Toropov, Magnetoresistance of a two-dimensional electron gas in a disordered artificial array of scatterers, Superlatt. Microstruct. 13(2), 263-265 (1993).

    ADS  Google Scholar 

  110. T. Nagao, Magnetotransport through random antidot lattices, J. Phys. Soc. Jpn. 65(8), 2606-2609 (1996).

    ADS  Google Scholar 

  111. D.G. Polyakov, F. Evers, A.D. Mirlin, and P. Wolfle, Quasiclassical magnetotransport in a random array of antidots, Phys. Rev. B 64(20), 205306 (2001).

    ADS  Google Scholar 

  112. F. Evers, A.D. Mirlin, D.G. Polyakov, and P. Wolfle, Magnetotransport in a random array of antidots, Physica E 12(1-4), 260-263 (2002).

    ADS  Google Scholar 

  113. K. Richter and M. Sieber, Semiclassical theory of chaotic quantum transport, Phys. Rev. Lett. 89(20), 206801 (2002).

    ADS  Google Scholar 

  114. I.L. Aleiner and A.I. Larkin, Divergence of classical trajectories and weak localization, Phys. Rev. B 54(20), 14423-14444 (1996).

    ADS  Google Scholar 

  115. T.J. Thornton, M.L. Roukes, A. Scherer, and B.P. Van de Gaag, Boundary scattering in quantum wires, Phys. Rev. Lett. 63(19), 2128-2131 (1989).

    ADS  Google Scholar 

  116. G. Nachtwei, G. Lütjering, D. Weiss, Z.H. Liu, K. von Klitzing, and C.T. Foxon, Breakdown of the quantum Hall effect in periodic and aperiodic antidot arrays, Phys. Rev. B 55(11),6731-6734 (1997).

    ADS  Google Scholar 

  117. G. Nachtwei, Z.H. Liu, I.I. Kaya, G. Lütjering, D. Weiss, K. von Klitzing, and K. Eberl, Nonequilibrium quantum transport in antidot arrays, Phys. Status Solidi B 204(1), 329-334 (1997).

    ADS  Google Scholar 

  118. G. Nachtwei, Z.H. Liu, G. Lütjering, R.R. Gerhardts, D. Weiss, K. von Klitzing, and K. Eberl, Critical currents in quantum Hall conductors with antidot arrays, Phys. Rev. B 57(16), 9937-9944 (1998).

    ADS  Google Scholar 

  119. C.M. Marcus, A.J. Rimberg, R.M. Westervelt, P.F. Hopkins, and A.C. Gossard, Conductance fluctuations and chaotic scattering in ballistic microstructures, Phys. Rev. Lett. 69(3), 506-509 (1992).

    ADS  Google Scholar 

  120. R.A. Jalabert, H.U. Baranger, and A.D. Stone, Conductance fluctuations in the ballistic regime: a probe of quantum chaos?, Phys. Rev. Lett. 65(19), 2442-2445 (1990).

    ADS  Google Scholar 

  121. H.U. Baranger, R.A. Jalabert, and A.D. Stone, Weak localization and integrability in ballistic cavities, Phys. Rev. Lett. 70(25), 3876-3879 (1993).

    ADS  Google Scholar 

  122. H.U. Baranger, R.A. Jalabert, and A.D. Stone, Quantum-chaotic scattering effects in semiconductor microstructures, Chaos 3(4), 665-682 (1993).

    ADS  Google Scholar 

  123. A.M. Chang, H.U. Baranger, L.N. Pfeiffer, and K.W. West, Weak localization in chaotic versus nonchaotic cavities: a striking difference in the line shape, Phys. Rev. Lett. 73(15), 2111-2114 (1994).

    ADS  Google Scholar 

  124. G. Lütjering, K. Richter, D. Weiss, J. Mao, R.H. Blick, K. von Klitzing, and C.T. Foxon, Weak localisation in ballistic cavities filled with antidot arrays, Surf. Sci. 361-362, 709-713 (1996).

    ADS  Google Scholar 

  125. R.D. Ye and S. Tarucha, Internal magnetic focusing in an array of open quantum dots, Jpn. J. Appl. Phys. l 38(1B), 319-321 (1999).

    ADS  Google Scholar 

  126. J.H. Smet, D. Weiss, R.H. Blick, G. Lütjering, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, and G. Weimann, Magnetic focusing of composite fermions through arrays of cavities, Phys. Rev. Lett. 77(11), 2272-2275 (1996).

    ADS  Google Scholar 

  127. J.H. Smet, D. Weiss, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, W. Wegscheider, P.T. Coleridge, Z.W. Wasilewski, and G. Weimann, Enhanced soft-wall effects for composite fermions in magnetic focusing and commensurability experiments, Physica E 1(1-4), 153-159 (1997).

    ADS  Google Scholar 

  128. J.H. Smet, D. Weiss, K. von Klitzing, R. Fleischmann, R. Ketzmerick, T. Geisel, W. Wegscheider, P.T. Coleridge, Z.W. Wasilewski, and G. Weimann, Composite fermions in magnetic focusing and commensurability experiments, Physica B 249-251, 15-22 (1998).

    ADS  Google Scholar 

  129. S. Bhargava, H.-R. Blank, V. Narayanamurti, and H. Kroemer, Fermi-level pinning position at the Au-InAs interface determined using ballistic electron emission microscopy, Appl. Phys. Lett. 70(6), 759-761 (1997).

    ADS  Google Scholar 

  130. M. Behet, S. Nemeth, J. De Boeck, G. Borghs, J. Tummler, J. Woitok, and J. Geurts, Molecular beam epitaxy and characterization of InAs/Al0.2Ga0.8Sb heterostructures for magnetic sensing applications, Semicond. Sci. Tech. 13(4), 428-432 (1998).

    ADS  Google Scholar 

  131. M. Behet, J. Das, J. de Boeck, and G. Borghs, InAs/(Al,Ga)Sb quantum well structures for magnetic sensors, IEEE Trans. Magn. 34(4), 1300-1302 (1998).

    ADS  Google Scholar 

  132. C. Gould, A.S. Sachrajda, Y. Feng, A. Delage, P.J. Kelly, K. Leung, and P.T. Coleridge, Phase coherence and trajectory trapping around one or two independently controllable antidots in quantum wires, Phys. Rev. B 51(16), 11213-11216 (1995).

    ADS  Google Scholar 

  133. A.F Andreev, The thermal conductivity of the intermediate state in superconductors, Sow Phys.—JETP 19(5), 1228-1231 (1964).

    Google Scholar 

  134. I. Kosztin, D.L. Maslov, and P.M. Goldbart, Chaos in Andreev billiards, Phys. Rev. Lett. 75(9), 1735-1738 (1995).

    ADS  Google Scholar 

  135. J.A. Melsen, P.W. Brouwer, K.M. Frahm, and C.W.J. Beenakker, Induced superconductivity distinguishes chaotic from integrable billiards, Europhys. Lett. 35(1), 7-12 (1996).

    ADS  Google Scholar 

  136. W. Ihra, M. Leadbeater, J.L. Vega, and K. Richter, Semiclassical theory of integrable and rough Andreev billiards, Eur. Phys. J. B 21(3), 425-435 (2001).

    MathSciNet  ADS  Google Scholar 

  137. I. Adagideli and P.M. Goldbart, Quantal Andreev billiards: Density of states oscillations and the spectrum-geometry relationship, Phys. Rev. B 65(20), 201306 (2002).

    ADS  Google Scholar 

  138. F. Rahman, T.J. Thornton, R. Huber, L.F. Cohen, W.T. Yuen, and R.A. Stradling, Superconductor-semiconductor interaction effects in mesoscopic hybrid structures, Phys. Rev. B 54(19), 14026-14031 (1996).

    ADS  Google Scholar 

  139. H. Takayanagi and T. Kawakami, Superconducting proximity effect in the native inversion layer on InAs, Phys. Rev. Lett. 54(22), 2449-2452 (1985).

    ADS  Google Scholar 

  140. T. Kawakami and H. Takayanagi, Single-crystal n-InAs coupled Josephson junction, Appl. Phys. Lett. 46(1), 92-94 (1985).

    ADS  Google Scholar 

  141. C. Nguyen, H. Kroemer, and E.L. Hu, Anomalous Andreev conductance in InAs-AlSb quantum well structures with Nb electrodes, Phys. Rev. Lett. 69(19), 2847-2850 (1992).

    ADS  Google Scholar 

  142. A.F. Morpurgo, S. Holl, B.J. van Wees, T.M. Klapwijk, and G. Borghs, Phase conjugated Andreev backscattering in two-dimensional ballistic cavities, Phys. Rev. Lett. 78(13), 2636-2639 (1997).

    ADS  Google Scholar 

  143. J. Eroms, M. Tolkiehn, D. Weiss, U. Rössler, J. De Boeck, and G. Borghs, Com-mensurability effects in Andreev antidot billiards, Europhys. Lett. 58(4), 569-575 (2002).

    ADS  Google Scholar 

  144. J. Eroms, D. Weiss, J. De Boeck, and S. Borghs, Magnetotransport properties of periodic Nb-2DEG structures, Physica C 352(1-4), 131-134 (2001).

    ADS  Google Scholar 

  145. A. Jacobs, R. Kümmel, and H. Plehn, Proximity effect, Andreev reflections, and charge transport in mesoscopic superconducting/semiconducting heterostructures, Superlatt. Microstruct. 25(5-6), 669-681 (1999).

    ADS  Google Scholar 

  146. J. Eroms, M. Tolkiehn, D. Weiss, U. Rössler, J. De Boeck, and S. Borghs, Chaotic motion and suppression of commensurability effects in an Andreev antidot billiard, Physica E 12(1-4), 918-921 (2002).

    ADS  Google Scholar 

  147. A. Chrestin, Y. Matsuyama, and U. Merkt, Evidence for a proximity-induced energy gap in Nb/InAs/Nb junctions, Phys. Rev. B 55(13), 8457-8465 (1997).

    ADS  Google Scholar 

  148. D. Weiss, Elektronen in kiinstlichen Kristallen. Verlag Harri Deutsch, Frankfurt (1994).

    Google Scholar 

  149. J. Heremans, B.K. Fuller, C.M. Thrush, and V. Bayot, Temperature dependence of the magnetoresistance of InxGa1-x As antidot lattices, Phys. Rev. B 54(4), 2685-2690 (1996).

    ADS  Google Scholar 

  150. N. A. Mortensen, K. Flensberg, and A.-P. Jauho, Angle dependence of Andreev scattering at semiconductor-superconductor interfaces, Phys. Rev. B 59(15), 10176-10182 (1999).

    ADS  Google Scholar 

  151. J. Nitta, T. Akazaki, and H. Takayanagi, Magnetic-field dependence of Andreev reflection in a clean Nb-InAs-Nb junction, Phys. Rev. B 49(5), 3659-3662 (1994).

    ADS  Google Scholar 

  152. P.C. van Son, H. van Kempen, and P. Wyder, New method to study the proximity effect at the normal-metal-superconductor interface, Phys. Rev. Lett. 59(19), 2226-2228 (1987).

    ADS  Google Scholar 

  153. P.C. van Son, H. van Kempen, and P. Wyder, Andreev reflection and geometrical resonance effects for a gradual variation of the pair potential near the normal-metal-superconductor interface, Phys. Rev. B 37(10), 5015-5023 (1988).

    ADS  Google Scholar 

  154. M. Tornow, D. Weiss, K. von Klitzing, K. Eberl, D.J. Bergman, and Y.M. Strelniker, Anisotropic magnetoresistance of a classical antidot array, Phys. Rev. Lett. 77(1), 147-150 (1996).

    ADS  Google Scholar 

  155. K. Kern, D. Heitmann, P. Grambow, Y.H. Zhang, and K. Ploog, Collective excitations in antidots, Phys. Rev. Lett. 66(12), 1618-1621 (1991).

    ADS  Google Scholar 

  156. D. Heitmann, K. Kern, T. Demel, P. Grambow, K. Ploog, and Y.H. Zhang, Spectroscopy of quantum dots and antidots, Surf. Sci. 267(1-3), 245-252 (1992).

    ADS  Google Scholar 

  157. Y. Zhao, D.C. Tsui, M. Santos, M. Shayegan, R.A. Ghanbari, D.A. Antoniadis, and H.I. Smith, Magneto-optical absorption in a two-dimensional electron grid, Appl. Phys. Lett. 60(12), 1510-1512(1992).

    ADS  Google Scholar 

  158. D. Heitmann, Far infrared spectroscopy of quantum-dots and antidot arrays, Physica B 212(3), 201-206(1995).

    ADS  Google Scholar 

  159. K. Bollweg, T. Kurth, D. Heitmann, E. Vasiliadou, K. Eberi, and H. Brugger, Circular polarization of far-infrared modes in antidot arrays, Phys. Rev. B 52(11), 8379-8383 (1995).

    ADS  Google Scholar 

  160. A. Huber, I. Jejina, H. Lorenz, J.P. Kotthaus, S. Bakker, and T.M. Klapwijk, Far-infrared excitations in antidot systems on silicon MOS structures, Semicond. Sci. Tech. 10(3), 365-368 (1995).

    ADS  Google Scholar 

  161. T. Deruelle, Y. Guldner, and B. Meurer, Collective excitations in tunable antidot arrays, Solid State Commun. 96(11), 877-880 (1995).

    ADS  Google Scholar 

  162. M. Hochgrafe, B.P. van Zyl, C. Heyn, D. Heitmann, and E. Zaremba, Far-infrared excitations in rectangular antidot arrays, Phys. Rev. B 63(3), 033316 (2001).

    ADS  Google Scholar 

  163. P.D. Ye, L.W. Engel, D.C. Tsui, J.A. Simmons, J.R. Wendt, G.A. Vawter, and J.L. Reno, High magnetic-field microwave conductivity of two-dimensional electrons in an array of antidots, Phys. Rev. B 65(12), 121305 (2002).

    ADS  Google Scholar 

  164. D. Huang and G. Gumbs, Magnetoplasmon excitations in a two-dimensional square array of antidots, Phys. Rev. B 47(15), 9597-9604 (1993).

    ADS  Google Scholar 

  165. G.Y Wu and Y. Zhao, Magnetoplasmons and FIR response of an antidot array, Surf. Sci. 305(1-3), 601-605 (1994).

    ADS  Google Scholar 

  166. V. Fessatidis, H.L. Cui, and O. Kuhn, Hydrodynamical theory of magnetoplasma excitations in an antidot system, Phys. Rev. B 47(11), 6598-6602 (1993).

    ADS  Google Scholar 

  167. S.A. Mikhailov and V.A. Volkov, Theory of electromagnetic response and collective excitations in antidots, Phys. Rev. B 52(24), 17260-17268 (1995).

    ADS  Google Scholar 

  168. A.V. Chaplik, Magnetoexcitons in quantum rings and in antidots, JETP Lett. 62(11), 900-904 (1995).

    ADS  Google Scholar 

  169. S.A. Mikhailov, Theory of electromagnetic response and collective excitations of a square lattice of antidots, Phys. Rev. B 54(20), R14293-14296 (1996).

    ADS  Google Scholar 

  170. V. Gudmundsson and S.I. Erlingsson, presented at the 1997 Advanced Workshop on Frontiers in Electronics, WOFE’97 Proceedings, New York, NY, USA (1997) (unpublished).

    Google Scholar 

  171. V. Gudmundsson, Far-infrared-active collective modes of short-period arrays of quantum dots and antidots, Phys. Rev. B 57(7), 3989-3993 (1998).

    ADS  Google Scholar 

  172. A. Emperador, M. Pi, M. Barranco, E. Lipparini, and L. Serra, Far-infrared excitations in an antidot at finite magnetic fields, Jpn. J. Appl. Phys. 1 40(2A), 518-524 (2001).

    Google Scholar 

  173. E. Vasiliadou, R. Fleischmann, D. Weiss, D. Heitmann, K. von Klitzing, T. Geisel, R. Bergmann, H. Schweizer, and C.T. Foxon, Cyclotron-resonance anomalies in an anti-dot array measured by microwave photoconductivity, Phys. Rev. B 52(12), R8658-8661 (1995).

    ADS  Google Scholar 

  174. B.G.L. Jager, S. Wimmer, A. Lorke, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Edge and bulk effects in Terahertz photoconductivity of an antidot superlattice, Phys. Rev. B 63(4), 045315 (2001).

    ADS  Google Scholar 

  175. D.G. Polyakov, F. Evers, and I.V. Gornyi, Cyclotron resonance in antidot arrays, Phys. Rev. B 65(12), 125326(2002).

    ADS  Google Scholar 

  176. G.R. Nash, S.J. Bending, M. Riek, and K. Eberl, Commensurate and rosette-shaped electron orbits probed by surface acoustic wave attenuation, Phys. Rev. B 63(11), 113316 (2001).

    ADS  Google Scholar 

  177. I.V. Kukushkin, D. Weiss, G. Lütjering, R. Bergmann, H. Schweizer, K. von Klitzing, K. Eberl, P. Rotter, M. Suhrke, and U. Rössler, Manifestation of commensurate orbits in the magnetoluminescence spectrum of electrons in antidot arrays, Phys. Rev. Lett. 79(9), 1722-1725(1997).

    ADS  Google Scholar 

  178. A. Lorke, S. Wimmer, B. Jager, J.P. Kotthaus, W. Wegscheider, and M. Bichler, Far-infrared and transport properties of antidot arrays with broken symmetry, Physica B 249-251, 312-316 (1998).

    ADS  Google Scholar 

  179. J.H. Smet, in Composite Fermions (eds. O. Heinonen) World Scientific Publishing, Singapore, 443-491 (1998).

    Google Scholar 

  180. J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Phys. Rev. Lett. 63(2), 199-202 (1989).

    ADS  Google Scholar 

  181. B.I. Halperin, P.A. Lee, and N. Read, Theory of the half-filled Landau level, Phys. Rev. B 47(12), 7312-7343 (1993).

    ADS  Google Scholar 

  182. O. Heinonen, Composite Fermions: A Unified View of the Quantum Hall Regime. World Scientific Publishing Co., Singapore (1998).

    Google Scholar 

  183. R. Fleischmann, T. Geisel, C. Holzknecht, and R. Ketzmerick, Nonlinear dynamics of composite fermions in nanostructures, Europhys. Lett. 36(3), 167-172 (1996).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weiss, D., Richter, K., Eroms, J. (2003). Classical and Quantum Transport in Antidot Arrays. In: Bird, J.P. (eds) Electron Transport in Quantum Dots. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0437-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0437-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7459-2

  • Online ISBN: 978-1-4615-0437-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics