Skip to main content

Satellite Constellation Networks

The path from orbital geometry through network topology to autonomous systems

  • Chapter

Abstract

Satellite constellations are introduced. The effects of their orbital geometry on network topology and the resulting effects of path delay and handover on network traffic are described. The design of the resulting satellite network as an autonomous system is then discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman, M, Glover, D., and Sanchez, L. (1999). Enhancing TCP over satellite channels using standard mechanisms. IETF RFC 2488.

    Google Scholar 

  • Allman, M., et al. (2000), Ongoing TCP research related to satellites. IETF RFC 2760.

    Google Scholar 

  • Ballard, A.H. (1980). Rosette constellations of earth satellites. IEEE Transactions on Aerospace and Electronic Systems, 16(5):656–673.

    Article  Google Scholar 

  • Börjesson, J., Johansson, J., and Darin, F., (1999). GLONASS: experiences from the first global campaign. In Radio Vetenskap och Kommunikation 1999 (RVK ’99), Karlskrona, Sweden.

    Google Scholar 

  • Clarke, A.C. (1945). Extra-terrestrial relays, Wireless World, October, pages 305–308.

    Google Scholar 

  • Draim, J.E., Cefola, P.J., and Castiel, D. (2000). Elliptical orbit constellations — a new paradigm for higher efficiency in space systems? In Proceedings of 2000 IEEE Aerospace Conference.

    Google Scholar 

  • Droms, R. (1997). Dynamic host configuration protocol. IETF RFC 2131.

    Google Scholar 

  • Ekici, E., Akyildiz, I.F., and Bender, M.D. (2000). Datagram routing algorithm for LEO satellite networks. In Proceedings of IEEE INFOCOM 2000, pages 500–508.

    Google Scholar 

  • Ekici, E., Akyildiz, I.F., and Bender, M.D. (2001). Network layer integration of terrestrial and satellite networks over BGP-S. In Proceedings of Globecomm 2001, pages 2698–2702.

    Google Scholar 

  • Evans, J.V. (2000). The US filings for multimedia satellites: a review. International Journal of Satellite Communications, 18 (3): 121–160.

    Article  Google Scholar 

  • Fall, K. and Varadhan, K. (2002). ns manual/ ‘ns Notes and Documentation’, VINT project documentation, available with the network simulator ns from http://www.isi.edu/nsnam/

    Google Scholar 

  • Fraise. P., Coulomb, B., Monteuuis, B., and Soula, J.-L. (2000). SkyBridge LEO satellites: optimized for broadband communications in the 21st century. In Proceedings of 2000 IEEE Aerospace Conference.

    Google Scholar 

  • Fitzpatrick, E.J. (1995). Spaceway system summary. Space Communications, 13:7–23.

    Google Scholar 

  • Ghedia, L., Smith, K., and Titzer, G., (1999). Satellite PCN - the ICO system. International Journal of Satellite Communications, Special Issue: LEOs — Little and Big, 17(4):273–289.

    Article  Google Scholar 

  • Henderson, T.R. (1999). Networking over Next-Generation Satellite Systems. PhD dissertation, Computer Science Division, University of California at Berkeley.

    Google Scholar 

  • Henderson, T.R. and Katz, R.H. (2000). Network simulation for LEO satellite networks. In Proceedings of the 18th AIAA International Communications Satellite Systems Conference.

    Google Scholar 

  • Kruesi, F. (1996). The Global Positioning System: a DOT perspective of where we are and where we are going. In Proceedings of the Institute of Navigation GPS-96, Kansas City, Missouri, pages 3–6.

    Google Scholar 

  • Leopold, R.J. and Miller, A. (1993). The Iridium communications system. IEEE Potentials, 12(2):6–9.

    Article  Google Scholar 

  • Lüders, R.D. (1961). Satellite networks for continuous zonal coverage. American Rocket Society Journal, 31:179–184.

    Google Scholar 

  • Maral, G. (1995). VSAT Networks, John Wiley & Son.

    Book  Google Scholar 

  • Mohorčič, M., Werner, M., Svigelj, A., and Kandus, G. (2000). Alternate link routing for traffic engineering in packet-oriented ISL networks. International Journal of Satellite Communications, special issue on the broadband satellite networking mini-conference at IFIP Networking 2000, 19(5):463–480.

    Google Scholar 

  • Partridge, C. and Shepard, T. (1997). TCP performance over satellite links. IEEE Network, 11(5):44–49.

    Article  Google Scholar 

  • Perkins, C.E. (1998). Mobile IP, Prentice Hall.

    Google Scholar 

  • Postel, J. (1972). Satellite considerations. IETF RFC 346.

    Google Scholar 

  • Rekhter, Y. and Li, T. (Ed.) (1995). A Border Gateway Protocol 4 (BGP-4). IETF RFC 1771.

    Google Scholar 

  • Solomon, J. (1996). Applicability statement for IP mobility support. IETF RFC 2005.

    Google Scholar 

  • Seo, K., Crowcroft, J., Spilling, P., Laws, J., and Leddy, J. (1988). Distributed testing and measurement across the Atlantic packet satellite network (SATNET). In Proceedings of S1GCOMM’88.

    Google Scholar 

  • Taormina, F.A. et al. (1997). Application of Hughes Communications, Inc. for authority to launch and operate Spaceway NGSO, an NGSO expansion to the Spaceway global broadband satellite system. Filing with the US Federal Communications Commission, Hughes Communications, Inc.

    Google Scholar 

  • Tuck, E.F., Patterson, D.P., Stuart, J.R., and Lawrence, M.H. (1994). The Calling Network: a global wireless communications system. International Journal of Satellite Communications, 12(1):45–61.

    Article  Google Scholar 

  • Walker, J.G. (1984). Satellite constellations. Journal of the British Interplanetary Society, 37:559–571.

    Google Scholar 

  • Werner, M., Delucchi, C, Vögel, H.-J., Maral, G., and De Ridder, J.-J. (1997a). ATM-based routing in LEO/MEO satellite networks with intersatellite links. IEEE Journal on Selected Areas in Communications, 15(l):69–82.

    Article  Google Scholar 

  • Werner, M., Jahn, A., Lutz, E., and Böttcher, A. (1995). Analysis of system parameters for LEO/ICO-satellite communication networks. IEEE Journal on Selected Areas in Communications, 13(2):371–381.

    Article  Google Scholar 

  • Werner, M., Kroner, O., and Maral, G. (1997b). Analysis of intersatellite links load in a near-polar LEO satellite constellation. In Proceedings of the International Mobile Satellite Conference 1997, pages 289–294.

    Google Scholar 

  • Werner, M.. Frings, J., Wauquiez, F., and Maral, G. (1999). Capacity dimensioning of ISL networks in broadband LEO satellite systems. In Proceedings of the Sixth International Mobile Satellite Conference, pages 334–341.

    Google Scholar 

  • Wiedeman, R.A. and Viterbi, A.J. (1993). The Globalstar mobile satellite system for worldwide personal communications. In Proceedings of the International Mobile Satellite Conference 1993, pages 291–296.

    Google Scholar 

  • Wood, L., Clerget, A., Andrikopoulos, I., Pavlou, G„ and Dabbous, W. (2001a). IP routing issues in satellite constellation networks. International Journal of Satellite Communications, special issue on IP, 19(l):69–92.

    Google Scholar 

  • Wood, L., Pavlou, G., and Evans, B.G. (2001b). Effects on TCP of routing strategies in satellite constellations. IEEE Communications Magazine, special issue on Satellite-Based Internet Technology and Services, 39(3):172–181.

    Google Scholar 

  • Wood, L., Pavlou, G., and Evans, B.G. (2001c). Managing diversity with handover to provide classes of service in satellite constellation networks. In Proceedings of the 19th AIAA International Communications Satellite Systems Conference.

    Google Scholar 

  • Worfolk, P.A. and Thurman, R.E. SaVi — software for the visualization and analysis of satellite constellations. Software developed at The Geometry Center, University of Minnesota. SaVi 1.2 is now available from http://savi.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wood, L. (2003). Satellite Constellation Networks. In: Zhang, Y. (eds) Internetworking and Computing Over Satellite Networks. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0431-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0431-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5073-6

  • Online ISBN: 978-1-4615-0431-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics