Skip to main content

pH-Regulatory Mechanisms in the Mammalian Oocyte and Early Embryo

  • Chapter

Abstract

Na+/H+ exchangers and intracellular pH (pHi) regulation assumed a central position in the study of fertilization following the discovery that egg activation in the sea urchin is triggered in part by a substantial pHj increase immediately after fertilization, and that this increase is mediated by the activation of Na+/H+ exchange (1). In mammals, the regulation of pHi has been extensively studied in early embryos, with more recent attention given to the role of pHi-regulatory mechanisms during fertilization and meiosis in the oocyte. This review will focus principally on pHi-regulatory mechanisms in mammalian oocytes and preimplantation embryos during meiosis, fertilization, and embryo development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Johnson, JD, Epel, D, Paul, M. Intracellular pH and activation of sea urchin eggs after fertilisation. Nature 262: 661–664, 1976

    Article  PubMed  CAS  Google Scholar 

  2. Eppig, JJ. Mammalian oocyte development in vivo and in vitro. In: Wassarman, PM, editors, Elements of Mammalian Fertilization Volume I. Boca Raton: CRC Press, p 57–76, 1991

    Google Scholar 

  3. Albertini, DF, Wickramasinghe, D, Messinger, S, Mattson, BA, Plancha, CE. Nuclear and cytoplasmic changes during oocyte maturation. In: Bavister, BD, editors, Preimplantation Embryo Development. New York: Springer-Verlag. p 3–21, 1993

    Chapter  Google Scholar 

  4. Schultz, RM. Meiotic Maturation of Mammalian Oocytes. In: Wassarman PM, editors, Elements of Mammalian Fertilization Volume I: Basic Concepts. Boca Raton: CRC Press, p 77–104, 1993

    Google Scholar 

  5. Biggers, JD, Bell, JE, Benos, DJ. Mammalian blastocyst: transport functions in a developing epithelium. Am J Physiol 255: C419–C432, 1988

    PubMed  CAS  Google Scholar 

  6. Barr, KJ, Garrill, A, Jones, DH, Orlowski, J, Kidder, GM. Contributions of Na+/H+ exchanger isoforms to preimplantation development of the mouse. Mol Reprod Dev 50: 146–153, 1998

    Article  PubMed  CAS  Google Scholar 

  7. Manejwala, FM, Cragoe, EJ, Schultz, RM. Blastocoel expansion in the preimplantation mouse embryo: role of extracellular sodium and chloride and possible apical routes of their entry. Dev Biol 133:210–220, 1989

    Article  PubMed  CAS  Google Scholar 

  8. Harding, EA, Day, ML, Gibb, CA, Johnson, MH, Cook, DI. The activity of the H+-monocarboxylate cotransporter during pre-implantation development in the mouse. Pflugers Arch. 438: 397–404, 1999

    Article  PubMed  CAS  Google Scholar 

  9. Zhao Y, Chauvet, PJ, Alper, SL, Baltz, JM. Expression and function of bicarbonate/chloride exchangers in the preimplantation mouse embryo, J Biol Chem 270:24428–24434, 1995

    Article  PubMed  CAS  Google Scholar 

  10. Phillips, KP, Leveille, MC, Claman, P, Baltz, JM. Intracellular pH regulation in human preimplantation embryos. Hum Reprod 15: 896–904, 2000

    Article  PubMed  CAS  Google Scholar 

  11. Zhao, Y, Doroshenko, PA, Alper, SL, Baltz, JM. Routes of Cl- transport across the trophectoderm of the mouse blastocyst. Dev Biol 189:148–160, 1997

    Article  PubMed  CAS  Google Scholar 

  12. Brinster, RL. Studies on the development of mouse embryos in vitro. I. The effect of osmolarity and hydrogen ion concentration. J Exp Zool 158:49–58, 1965

    Article  PubMed  CAS  Google Scholar 

  13. Baltz, JM, Biggers, JD, Lechene, C. Apparent absence of Na+/H+ antiport activity in the two-cell mouse embryo. Dev Biol 138: 421–429, 1990

    Article  PubMed  CAS  Google Scholar 

  14. Baltz, JM, Biggers, JD, Lechene, C. Two-cell stage mouse embryos appear to lack mechanisms for alleviating intracellular acid loads. J Biol Chem 266:6052–6057, 1991

    PubMed  CAS  Google Scholar 

  15. Gibb, CA, Poronnik, P, Day, ML, Cook, DI. Control of cytosolic pH in two-cell mouse embryos: roles of H(+)- lactate cotransport and Na+/H+ exchange. Am J Physiol 273: C404–C419, 1997

    PubMed  CAS  Google Scholar 

  16. Lane, M and Bavister, BD. Regulation of intracellular pH in bovine oocytes and cleavage stage embryos. Mol Reprod Dev 54: 396–401, 1999a

    Article  PubMed  CAS  Google Scholar 

  17. Lane, M, Baltz, JM, Bavister, BD. Bicarbonate/chloride exchange regulates intracellular pH of embryos but not oocytes of the hamster. Biol Reprod 61:452–457, 1999b

    Article  PubMed  CAS  Google Scholar 

  18. Steeves, CL, Lane, M, Bavister, BD, Phillips, KP, Baltz, JM. Differences in intracellular pH regulation by Na+/H+ antiporter among 2-cell mouse embryos derived from females of different strains. Biol Reprod 65:14–22, 2001

    Article  PubMed  CAS  Google Scholar 

  19. Dale, B, Menezo, Y, Cohen, J, DiMatteo, L, Wilding, M. Intracellular pH regulation in the human oocyte. Hum Reprod 13:964–970, 1998

    Article  PubMed  CAS  Google Scholar 

  20. Baltz, JM, Biggers, JD, Lechene, C. Relief from alkaline load in two-cell stage mouse embryos by bicarbonate/chloride exchange. J Biol Chem 266: 17212–17217, 1991

    PubMed  CAS  Google Scholar 

  21. Zhao, Y and Baltz, JM. Bicarbonate/chloride exchange and intracellular pH throughout preimplantation mouse embryo development. Am J Physiol: Cell Physiol 271: CI512–C1520, 1996

    Google Scholar 

  22. Epel, D. The role of Na+/H+ exchange and intracellular pH changes in fertilization. In: Grinstein S, editors, Na+/H+ Exchange. Boca Raton: CRC Press, p 209–223, 1988

    Google Scholar 

  23. Shen, SS and Steinhardt, RA Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature 272: 253–254, 1978

    Article  PubMed  CAS  Google Scholar 

  24. Johnson, CH and Epel, D. Starfish oocyte maturation and fertilization: intracellular pH is not involved in activation. Dev Biol 92:461–469, 1982

    Article  PubMed  CAS  Google Scholar 

  25. Ben Yosef, D, Oron, Y, Shalgi, R. Intracellular pH of rat eggs is not affected by fertilization and the resulting calcium oscillations. Biol Reprod 55:461–468, 1996

    Article  Google Scholar 

  26. Kline, D and Zagray, JA. Absence of an intracellular pH change following fertilisation of the mouse egg. Zygote 3: 305–311, 1995

    Article  PubMed  CAS  Google Scholar 

  27. Phillips, KP and Baltz, JM. Intracellular pH change does not accompany egg activation in the mouse. Mol Reprod Dev 45:52–60, 1996

    Article  PubMed  CAS  Google Scholar 

  28. Lane, M, Baltz, JM, Bavister, BD. Na+/H+ antiporter activity in hamster embryos is activated during fertilization. Dev Biol 208: 244–252, 1999

    Article  PubMed  CAS  Google Scholar 

  29. Phillips, KP and Baltz, JM. Intracellular pH regulation by HCO3 -/Cl- exchange is activated during early mouse zygote development. Dev Biol 208: 392–405, 1999

    Article  PubMed  CAS  Google Scholar 

  30. Lane, M, Baltz, JM, Bavister, BD. Regulation of intracellular pH in hamster preimplantation embryos by the sodium hydrogen (Na+/H+) antiporter. Biol Reprod 59: 1483–1490, 1998

    Article  PubMed  CAS  Google Scholar 

  31. Doree, M and Hunt, T. From Cdc2 to Cdkl: when did the cell cycle kinase join its cyclin partner? J Cell Sci 115: 2461–2464, 2002

    PubMed  CAS  Google Scholar 

  32. Phillips, KP, Petrunewich, MAF, Collins, JL, Baltz, JM. The intracellular pH-regulatory HCO3 -/C1- exchanger in the mouse oocyte is inactivated during first meiotic metaphase and reactivated after egg activation via the MAP kinase pathway. Mol Biol Cell 13:3800–3810, 2002

    Article  PubMed  CAS  Google Scholar 

  33. Ohi, R and Gould, KL, Regulating the onset of mitosis. Curr Opin Cell Biol 11: 267–273, 1999

    Article  PubMed  CAS  Google Scholar 

  34. Gross, SD, Schwab, MS, Taieb, FE, Lewellyn, AL, Qian, YW, Mailer JL. The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90(Rsk). Curr Biol 10:430–438, 2000

    Article  PubMed  CAS  Google Scholar 

  35. Moos, J, Visconti, PE, Moore, GD, Schultz, RM, Kopf, GS. Potential role of mitogen-activated protein kinase in pronuclear envelope assembly and disassembly following fertilization of mouse eggs. Biol Reprod 53: 692–699, 1995

    Article  PubMed  CAS  Google Scholar 

  36. Phillips, KP, Petrunewich, MAF, Collins, JL, Booth, RA, Liu, XJ, Baltz, JM. Inhibition of MEK or cdc2 kinase parthenogenetically activates mouse eggs and yields the same phenotypes as mos-/- parthenogenotes. Dev Biol 247:210–223, 2002

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Baltz, J.M. (2003). pH-Regulatory Mechanisms in the Mammalian Oocyte and Early Embryo. In: Karmazyn, M., Avkiran, M., Fliegel, L. (eds) The Sodium-Hydrogen Exchanger. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0427-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0427-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5071-2

  • Online ISBN: 978-1-4615-0427-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics