The Potential Role of the Na+/H+ Exchanger in Ischemia/Reperfusion Injury of the Central Nervous System

  • John W. Phillis
  • Julie G. Pilitsis
  • Michael H. O’Regan


The Na+/H+ exchangers (NHEs) are a group of expressed membrane proteins which have a role in regulating intracellular pH. NHEs are expressed in virtually all mammalian cells and there are currently eight identified isoforms (NHE1-NHE8). The exchangers, together with other membrane transport systems such as the Na+/HCO3 - cotransporter and the Cl- /HCO3 - exchanger, provide an important mechanism for eliminating excessive acid production during physiological cell metabolism and under pathological conditions (1). NHEs 6–8 differ from the other isoforms in that they are found intracellularly, where they may associate with mitochondria and the trans Golgi network rather than with the plasma membrane (2).


Middle Cerebral Artery Occlusion Mitochondrial Permeability Pore Transition Middle Cerebral Artery Occlusion Model Intracellular Acidosis Mild Acidosis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Orlowski J, Grinstein S. Na+/H+ exchangers of mammalian cells. J Biol Chem 272: 22373–22376, 1997PubMedCrossRefGoogle Scholar
  2. 2.
    Numata M, Orlowski J. Molecular cloning and characterization of a novel (Na+, K+)/H+ exchanger localized to the trans-Golgi network. J Biol Chem 276:17387–17394, 2001PubMedCrossRefGoogle Scholar
  3. 3.
    Pizzonnia JH, Ransom BR, Pappas CA. Characterization of Na+/H+ exchange activity in cultured rat hippocampal astrocytes. J Neurosci Res 44: 191–198, 1996CrossRefGoogle Scholar
  4. 4.
    Ma E, Haddad GG. Expression and localization of Na+/H+exchangers in rat central nervous system. Neuroscience 79: 591–603, 1997PubMedCrossRefGoogle Scholar
  5. 5.
    Yao H, Ma E, Gu XQ, Haddad GG. Intracellular pH regulation of CA1 neurons in Na+/H+ isoform 1 mutant mice. J Clin Invest 104:637–645, 1999PubMedCrossRefGoogle Scholar
  6. 6.
    Levine SA, Montrosse MH, Tse CM, Donowitz M. Kinetics and regulation of three cloned mammalian Na+/H+ exchangers stably expressed in a fibroblast cell line. J Biol Chem 268:25527–25535, 1993PubMedGoogle Scholar
  7. 7.
    Karmazyn M, Gan XT, Humphreys RA, Yoshida H, Kusumoto K. The myocardial Na+-H+ exchange. Structure, regulation, and its role in heart disease. Circ Res 85:777–786, 1999PubMedCrossRefGoogle Scholar
  8. 8.
    Staub F, Winkler A, Haberstok J, Plesnila N, Peters J, Chang RCC, Kempski O, Baethmann A. Swelling, intracellular acidosis, and damage of glial cells. Acta Neurochir [Suppl] 66:56–62, 1996Google Scholar
  9. 9.
    Chang RCC, Plesnila N, Ringel F, Gronlinger C, Staub F, Baethmann A. Role of protein kinase C in acidosis induced glial swelling - current understanding. Acta Neurochir (Suppl) 70:225–227, 1997Google Scholar
  10. 10.
    Kimelberg HK, Goderie SK, Higman S, Pang S, Waniewski RA. Swelling-induced release of glutamate, aspartate, and taurine from astrocyte cultures. J Neurosci 10: 1583–1591, 1990PubMedGoogle Scholar
  11. 11.
    Phillis JW, Song D, O’Regan MH. Inhibition by anion channel blockers of ischemia-evoked release of excitotoxic and other amino acids from rat cerebral cortex. Brain Res 758:9–16, 1997PubMedCrossRefGoogle Scholar
  12. 12.
    Matsuda T, Takuma K, Baba A. Na+-Ca2+ exchanger: physiology and pharmacology. Jpn J Pharmacol 74:1–20, 1997PubMedCrossRefGoogle Scholar
  13. 13.
    Lipton P. Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568, 1999PubMedGoogle Scholar
  14. 14.
    Tombaugh CG, Sapolsky RM. Mild acidosis protects hippocampal neurons from injury induced by oxygen and glucose deprivation. Brain Res 506:343–345, 1990PubMedCrossRefGoogle Scholar
  15. 15.
    Traynelis SF, Cull-Candy SG. Proton inhibition of N-methyl-D-aspartate receptors in cerebellar neurons. Nature 345:347–350, 1990PubMedCrossRefGoogle Scholar
  16. 16.
    Choi DW. “The Excitotoxic Concept.” In Primer on Cerebrovascular Diseases, KMA Welch, LR Caplan, DJ Reis, BK Siesjo, B Weir, eds. San Diego: Academic Press, pp 187–190, 1997CrossRefGoogle Scholar
  17. 17.
    Giffard RG, Monyer H, Christine CW, Choi DW. Acidosis reduces NMDA receptor activation, glutamate neurotoxicity, and oxygen-glucose deprivation neuronal injury in cortical cultures. Brain Res 506: 339–342, 1990PubMedCrossRefGoogle Scholar
  18. 18.
    Andreeva N, Khodorov B, Stelmashook E, Sokolova S, Cragoe E, Victorov L. 5-(N-Ethyl-N-isopropyl)amiloride and mild acidosis protect cultured cerebellar granule cells against glutamate-induced delayed neuronal death. Neuroscience 49:175–181, 1992PubMedCrossRefGoogle Scholar
  19. 19.
    Kaku D, Giffard R, Choi D. Neuroprotective effects of glutamate antagonists and extracellular acidity. Science 260:1516, 1993PubMedCrossRefGoogle Scholar
  20. 20.
    Simon RP, Niiro M, Gwinn R. Brain acidosis induced by hypercarbic ventilation attenuates focal ischemic injury. J Pharmacol Exp Ther 267:1428–1431, 1993PubMedGoogle Scholar
  21. 21.
    Vannucci RC, Towfighi J, Heitjan DF, Brucklacher RM. Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics 95:868–874, 1995PubMedGoogle Scholar
  22. 22.
    Sapolsky RM, Trafton J, Tombaugh GC. Excitotoxic neuron death, acidotic endangerment, and the paradox of acidotic protection. Adv Neurol 71:237–244, 1996PubMedGoogle Scholar
  23. 23.
    Bond JM, Chacon E, Herman B, Lemasters JJ. Intracellular pH and Ca2+ homeostasis in the pH paradox of reperfusion injury to neonatal rat cardiac myocytes. Am J Physiol 265: C129–C137, 1993PubMedGoogle Scholar
  24. 24.
    Lemasters JJ, Bond JM, Chacon E, Harper IS, Kaplan SH, Obata H, Trollinger DR, Herman B, Cascio WE. The pH paradox in ischemia-perfusion injury to cardiac myocytes. EXS 76:99–114, 1996PubMedGoogle Scholar
  25. 25.
    Ginsberg MD, Welsh FA, Budd NW. Deleterious effect of glucose pretreatment on recovery from difluse cerebral ischemia in the cat. Stroke 11:347–354, 1980PubMedCrossRefGoogle Scholar
  26. 26.
    Pulsinelli WA, Levy DE, Sigsbee B, Scherer P, Plum F. Increased damage after ischemic stroke in patients with hyperglycemia with or without established diabetes mellitus. Am J Med 74:540–544, 1983PubMedCrossRefGoogle Scholar
  27. 27.
    Pulsinelli WA, Waldman S, Rawlinson D, Plum F. Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 32:1239–1246, 1982PubMedCrossRefGoogle Scholar
  28. 28.
    Nedergaard M. Transient focal ischemia in hyperglycemic rats is associated with increased cerebral infarction. Brain Res 408:79–85, 1987PubMedCrossRefGoogle Scholar
  29. 29.
    Prado R, Ginsberg MD, Dietrich WD, Watson BD, Busto R. Hyperglycemia increases infarct size in collaterally perfused but not end-arterial vascular territories. J Cereb Blood Flow Metab 8:186–192, 1988PubMedCrossRefGoogle Scholar
  30. 30.
    Ginsberg MD, Prado R, Dietrich WD, Busto R, Watson BD. Hyperglycemia reduces the extent of cerebral infarction in rats. Stroke 18:570–574, 1987PubMedCrossRefGoogle Scholar
  31. 31.
    Zaaslow MA, Pearl RG, Schuer LM, Steinberg GK, Lieberson RE, Larson CP. Hyperglycemia decreases acute neuronal ischemic changes after middle cerebral artery occlusion in cats. Stroke 20:519–523, 1989CrossRefGoogle Scholar
  32. 32.
    Smith ML, Von Hanwehr R, Siesjo BK. Changes in extra- and intracellular pH in the brain following ischemia in hyperglycemic and in moderately hypoglycemic rats. J Cereb Blood Flow Metab 6:574–583, 1986PubMedCrossRefGoogle Scholar
  33. 33.
    Siesjo BK. Acidosis and ischemic brain damage. Neurochem Pathol 9:31–38, 1988.PubMedGoogle Scholar
  34. 34.
    Farooqui AA, Yang H-C, Rosenberger TA, Horrocks LA. Phospholipase A2 and its role in brain tissue. J Neurochem 69:889–901, 1997PubMedCrossRefGoogle Scholar
  35. 35.
    Saluja I, O’Regan MH, Song D, Phillis JW. Activation of cPLA2, PKC and ERKs in the rat cerebral cortex during ischemia/reperfusion. Neurochem Res 24:669–677, 1999PubMedCrossRefGoogle Scholar
  36. 36.
    Phillis JW, Song D, O’Regan MH. Effect of hyperglycemia on extracellular levels of amino acids and free fatty acids in the ischemic/reperfused rat cerebral cortex. Brain Res 837:177–183, 1999PubMedCrossRefGoogle Scholar
  37. 37.
    Pilitsis JG, Diaz FH, O’Regan MH, Phillis JW. Differential effects of phospholipase inhibitors on free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Brain Res (in press)Google Scholar
  38. 38.
    Hoffmann EK, Simonsen LO. Membrane mechanisms in volume and pH regulation in vertebrate cells. Physiol Rev 69:315–382, 1989PubMedGoogle Scholar
  39. 39.
    Chesler M. The regulation and modulation of pH in the nervous system. Progr Neurobioi 34:401–427, 1990CrossRefGoogle Scholar
  40. 40.
    Voronov J, Thomas A, Jo D. Protective effects of extracellular acidosis and blockade of sodium/hydrogen exchange during recovery from metabolic inhibition in neuronal tissue culture. J Neurochem 67:2379–2389, 1996CrossRefGoogle Scholar
  41. 41.
    Manev H, Bertolino M, Deerausquin G. Amiloride blocks glutamate-operated cationic channels and protects neurons in culture from glutamate-induced death. Neuropharmacol 29:1103–1110, 1990CrossRefGoogle Scholar
  42. 42.
    Ferimer HN, Kutina KL, Lamanna JC. Methyl isobutyl amiloride delays normalization of brain intracellular pH after cardiac arrest in rats. Crit Care Med 23:1106–1111, 1995PubMedCrossRefGoogle Scholar
  43. 43.
    Katayama Y, Kawamata T, Maeda T, Tsubokawa T. Free fatty acid liberation and cellular swelling during cerebral ischemia: the role of excitatory amino acids. Acta Neurochir (Wien) 60:242–245, 1994Google Scholar
  44. 44.
    Zerangue N, Kavanaugh MP. Flux coupling in a neuronal glutamate transporter. Nature 383:634–637, 1996PubMedCrossRefGoogle Scholar
  45. 45.
    Phillis JW, Ren J, O’Regan MH. Inhibition of Na+/H+ exchange by 5-(N-ethyl-N-isopropyl)-amiloride reduces free fatty acid efflux from the ischemic reperfused rat cerebral cortex. Brain Res 884:155–162, 2000PubMedCrossRefGoogle Scholar
  46. 46.
    Pilitsis JG, Diaz FG, O’Regan MH, Phillis JW. Inhibition of Na+/H+ exchange by SM-20220 attenuates free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Brain Res 913:156–158, 2001PubMedCrossRefGoogle Scholar
  47. 47.
    Phillis JW, Estevez AY, Guyot LL, O’Regan MH. 5-(N-ethyl-N-isopropyl)-amiloride, a Na+-H+ exchange inhibitor, protects gerbil hippocampai neurons from ischemic injury. Brain Res 839:199–202, 1999PubMedCrossRefGoogle Scholar
  48. 48.
    Kuribayashi Y, Itoh N, Horikawa N, Ohashi N. SM-20220, a potent Na+/H+ exchange inhibitor, improves consciousness recovery and neurological outcome following transient cerebral ischemia in gerbils. J Pharm Pharmacol 52:441–444, 2000PubMedCrossRefGoogle Scholar
  49. 49.
    Kuribayashi Y, Horikawa N, Itoh N, Kitano M, Ohashi N. Delayed treatment of Na+/H+ exchange inhibitor SM-20220 reduces infarct size in both transient and permanent middle cerebral artery occlusion in rats. Int J Tissue React 21:29–33, 1999PubMedGoogle Scholar
  50. 50.
    Attaphitaya S, Park K, Melvin JE. Molecular cloning and functional expression of a rat Na+/H+ exchanger (NHE5) highly expressed in brain. J Biol Chem 274: 4383–4388, 1999PubMedCrossRefGoogle Scholar
  51. 51.
    Raley-Susman KM, Cragoe E, Sapolsky RM, Kopito RR. Regulation of intracellular pH in cultured hippocampai neurons by an amiloride-insensitive Na+/H+ exchanger. J Biol Chem 266:2739–2745, 1991PubMedGoogle Scholar
  52. 52.
    Egger M, Niggli E. Regulatory function of Na-Ca exchange in the heart: milestones and outlook. J Memb Biol 168:107–130, 1999CrossRefGoogle Scholar
  53. 53.
    Shigekawa M, Iwamoto T. Cardiac Na+-Ca2+ exchange: molecular and pharmacological aspects. Circ Res 88:864–876, 2001PubMedCrossRefGoogle Scholar
  54. 54.
    Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke 29:705–718, 1998PubMedCrossRefGoogle Scholar
  55. 55.
    Schroder UH, Breder J, Sabelhaus CF, Reymann KG. The novel Na+/Ca2+ exchange inhibitor KB-R7943 protects CA1 neurons on rat hippocampal slices against hypoxic/hypoglycemic injury. Neuropharmacology 38:319–321, 2001CrossRefGoogle Scholar
  56. 56.
    Pilitisis JG, Diaz FG, O’Regan MH, Phillis JW. Inhibition of Na+/Ca++ exchange by KB-R7943, a novel selective antagonist, attenuates phosphoethanolamine and free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Brain Res 916: 192–198, 2001CrossRefGoogle Scholar
  57. 57.
    Matsuda T, Arakawa N, Takuma K, Kishida Y, Kawasaki Y, Sakaue M, Takahashi K, Takahashi T, Suzuki T, Ota T, Hamano-Takahashi A, Onishi M, Tanaka Y, Kameo K, Baba A. SEA0400, a novel and selective inhibitor of Na+/Ca2+ exchanger, attenuates reperfusion injury in the in vitro and in vivo cerebral ischemic models. J Pharmacol Exp Ther 298:240–256, 2001Google Scholar
  58. 58.
    Pilitisis JG, Diaz FG, O’Regan MH, Phillis JW. Inhibition of mitochondrial Na+/Ca2+ exchange by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1 -benzothiazepin-2(H)-one attenuates free fatty acid efflux in rat cerebral cortex during ischemia-reperfusion injury. Neurosci Lett 321:1–4, 2002CrossRefGoogle Scholar
  59. 59.
    Chakraborti T, Das E, Mondal M, Roychoudhury S, Chakraborti S. Oxidant, mitochondria, and calcium: an overview. Cell Signal 11:77–85, 1999PubMedCrossRefGoogle Scholar
  60. 60.
    Rustenbeck I, Munster W, Lenzen S. Relation between accumulation of phospholipase A2 reaction products and Ca2+ release in isolated liver mitochondria. Biochim Biophys Acta 22:129–138, 1996Google Scholar
  61. 61.
    Bonventre JV, Huang Z, Taheri MR, O’Leary E, Li E, Moskowitz MA, Sapirstein A. Reduced fertility and postischaemic brain injury in mice deficient in cytosolic phospholipase A2. Nature 390:622–625, 1997PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • John W. Phillis
    • 1
  • Julie G. Pilitsis
    • 2
  • Michael H. O’Regan
    • 3
  1. 1.Department of PhysiologyWayne State UniversityDetroitUSA
  2. 2.Department of Neurological Surgery, School of MedicineWayne State UniversityDetroitUSA
  3. 3.Biomedical Sciences, School of DentistryUniversity of Detroit MercyDetroitUSA

Personalised recommendations