Skip to main content

Applications of Chlorophyll Fluorescence in Ecotoxicology: Heavy Metals, Herbicides, and Air Pollutants

  • Chapter
Practical Applications of Chlorophyll Fluorescence in Plant Biology

Abstract

Environmental stress factors, such as herbicides, heavy metals, and air pollutants, may produce deleterious effects on photosynthesis and consequently damage higher plant or algal growth. The inhibition of photosynthesis or biochemical processes linked to photosynthesis can represent the physiological state of the plant and therefore measurement of photosynthesis can be used as an indicator of environmental stress effects (Krause and Weis, 1984; Lichtenthaler and Rinderle, 1988; Bolhàr-Nordenkampf et al., 1989). Very early in environmental studies in photosynthesis it was concluded that measuring an induced change of the photosynthetic process could be useful to monitor the presence of environmental pollutants (Neubauer and Schreiber, 1987). It has been established that measurements of variable chlorophyll a fluorescence from intact plants offer several parameter values that are very useful for understanding the functioning of specific processes of photosynthesis (Govindjee, 1995). As a consequence, some effects of pollutants detected by the change of fluorescence parameters were found to be directly associated with the photosynthetic process (Van Coillie et al., 1983; Wong and Couture, 1986). Different algal species are used in studying pollutant effects or for routine bioassays based on growth rate or fluorescence emission (Blanck et al., 1984; Juneau et al., 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arsalane, W., G. Parésys, J.-C. Duval, C. Wilhelm, R. Conrad, and C. Büchel. 1993. A new fluorometric device to measure the in vivo chlorophyll a fluorescence yield in microalgae and its use as a herbicide monitor. Eur. J. Phycol. 28:247–52.

    Article  Google Scholar 

  • Atal, N., P.P. Saradhi, and P. Mohanty. 1991. Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: Analysis of electron transport activities and changes in fluorescence yield. Plant Cell Physiol. 32:943–951.

    CAS  Google Scholar 

  • Barón, M., J.B. Arellano, and J. López-Gorgé. 1995. Copper and photosystem II: a controversial relationship. Physiol. Plant. 94:174–180.

    Article  Google Scholar 

  • Barthélemy, X., R. Popovic, and F. Franck. 1997. Studies on the O-J-I-P transient of chlorophyll fluorescence in relation to photosystem II assembly and heterogeneity in plastids of greening barley. J. Photochem. Photobiol. B: Biology 39:213–218.

    Article  Google Scholar 

  • Batley, G.E. 1991. Current heavy metal status of Lake Macquarie, p. 18-27. In: J.H. Whitehead, R.W. Kidd, and H.A. Bridgman (eds.), Lake Macquarie: An environmental reappraisal. University of Newcastle, Callaghan, Australia.

    Google Scholar 

  • Beauregard, M., L. Morin, and R. Popovic. 1987. Sulfate inhibition of photosystem II oxygen evolving complex. Appl. Biochem. Biotechnol. 16:109–117.

    Article  CAS  Google Scholar 

  • Beauregard, M., and R. Popovic. 1988. Removal of 23 and 18 kDalton extrinsic polypeptides by sulfate in photosystem II particles. J. Plant Physiol. 133:615–619.

    Article  CAS  Google Scholar 

  • Bernier, M., R. Popovic, and R. Carpentier. 1993. Mercury inhibition at the donor side of photosystem II is reversed by chloride. FEBS Letters 321:19–23.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, W.E., and R.L. Perry. 1981. Development and evaluation of a flow-through growth inhibition test with duckweed (Lemna minor). Proc. 4th Annual Symposium on Aquatic Toxicology, pp 238–271.

    Google Scholar 

  • Blanck, H., G. Wallin, and S.-A. Wängberg. 1984. Species-dependent variation in algal sensitivity to chemical compounds. Ecotoxicol. Environ. Saf. 8:339–351.

    Article  PubMed  CAS  Google Scholar 

  • Bolhàr-Nordenkampf, H. R., S.P. Long, N.R. Baker, G. ×quist, U. Schreiber, and E.G. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct. Ecol. 3:497–514.

    Article  Google Scholar 

  • Bowyer, J. R., P. Camilleri, and W.F. Vermaas. 1991. Photosystem II and its interaction with herbicides, p. 27– 85. In: M.P. Percival, and N.R. Baker (eds.) Herbicides. Elsevier Science Publishers, New York.

    Google Scholar 

  • Brack, W., and H. Frank. 1998. Chlorophyll a fluorescence: A tool for the investigation of toxic effects in the photosynthetic apparatus. Ecotoxicol. Environ. Saf. 40:34–41.

    Article  PubMed  CAS  Google Scholar 

  • Calatayud, A., M.J. Sanz, E. Calvo, E. Barreno, and S. Del Valle-Tascón. 1996. Relationship between ambient stress and chlorophyll a fluorescence in Parmelia quercina (Will.) Vain. intact thalli from northern Castellón (Spain). Lichenologist 28:49–65.

    Google Scholar 

  • Calatayud, A., P.J. Temple, and E. Barreno. 2000. Chlorophyll a fluorescence emission, xanthophyll cycle activity, and the net photosynthetic rate responses to ozone in some foliose and fruticose lichen species. Photosynthetica 38:281–286.

    Article  CAS  Google Scholar 

  • Calatayud, A., and E. Barreno. 2001. Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ. Pollut. 115:283–289.

    Article  PubMed  CAS  Google Scholar 

  • Calatayud, A., J.W. Alvarado, D.J. Ramirez, and E. Barreno. 2002a. Effects of ozone on photosynthetic CO2 exchange chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol. Plant 116:308–316.

    Article  CAS  Google Scholar 

  • Calatayud, A., J.W. Alvarado, and E. Barreno. 2002b. Differences in ozone sensitivity in three varieties of cabbage (Brassica oleracea L.) in rural Mediterranean area. J. Plant Phys. (in press).

    Google Scholar 

  • Campbell, D., V. Hurry, A.K. Clarke, P. Gustafsson, and G. Öquist. 1998. Microbiol. Mol. Biol. Rev. 62:667–683.

    PubMed  CAS  Google Scholar 

  • Carrasco-Rodriguez, J. L., and S. Del Valle-Tascon. 2001. Impact of elevated ozone on chlorophyll a fluorescence in field-grown oat (Avena sativa). Environ. Exp. Bot. 45:133–142.

    Article  PubMed  CAS  Google Scholar 

  • Chappelka, A. H., and P.H. Freer-Smith. 1995. Predisposition of trees by air pollutants to low temperatures and moisture stress. Environ. Pollut. 87:105–117.

    Article  PubMed  CAS  Google Scholar 

  • Clijsters, H., and F. Van Assche. 1985. Inhibition of photosynthesis by heavy metals. Photosynth. Res 7:31–40.

    Article  CAS  Google Scholar 

  • Conrad, R., C. Büchel, C. Wilhelm, W. Arsalane, C. Berkaloff, and J.-C. Duval. 1993. Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J. Appl. Phycol. 5:505–16.

    Article  CAS  Google Scholar 

  • Couture, P., S.A. Visser, R. van Coillie, and C. Blaise. 1985. Algal bioassays: their significance in monitoring water quality with respect to nutrients and toxicants. Schweiz. Z.Hydrol. 47: 127–158.

    Article  CAS  Google Scholar 

  • Critchley, C. 1998. Photoinhibition, p. 264–272 . In: A.S. Raghavendra (ed.) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Cvetkovic, A.D., G. Samson, P. Couture, and R. Popovic. 1991. Study of dependency between culture growth and photosynthetic efficiency measured by fluorescence induction in Selenastrum capricornutum inhibited by copper. Ecotoxicol. Environ. Saf. 22:127–132.

    Article  PubMed  CAS  Google Scholar 

  • De Filippis, L.F., and C.K. Pallaghy. 1994. Heavy metals: sources and biological effects, p. 32–77. In: L.C. Rai, J.P. Caur, and C.J. Soeder (eds.), Algae and water pollution: Advances in limnology series, vol. 42. Schweizerbart, Stuttgart.

    Google Scholar 

  • Deltoro, V. I., C. Gimeno, A. Calatayud, and E. Barreno. 1999. Effects of SO2 fumigations on photosynthetic CO2 gas exchange, chlorophyll a fluorescence emission and antioxidant enzymes in the lichens Evernia prunastri and Ramalina farinacea. Physiol. Plant. 105: 648–54.

    Article  CAS  Google Scholar 

  • Dewez, D., P. Eullaffroy, and R. Popovic. 2001. L’utilisation de plante comme outils de mise en evidence de la pollution des produits phytosanitaires, p. 133–140. In: M. Couderchet, P. Eullaffroy, and G. Vernet (eds.) Produits phytosanitaires. Analyse, résidus, metabolites, écotoxicologie, modes d’action, transfert. Presses Universitaires de Reims, Reims, France.

    Google Scholar 

  • Dewez, D., M. Marchand, P. Eullaffroy, and R. Popovic. 2002. Evaluation of diuron derivates effects on Lemna gibba by using fluorescence toxicity index. Environ. Toxicol. 17:493–501.

    Article  PubMed  CAS  Google Scholar 

  • El Jay, A., J.-M. Ducruet, J.-C. Duval, and J.P. Pelletier. 1997. A high-sensitivity chlorophyll fluorescence assay for monitoring herbicide inhibition of photosystem II in the chlorophyte Selenastrum capricornutum: Comparison with effect on cell growth. Arch. Hydrobiol. 140:273–86.

    Google Scholar 

  • Fangmeier, A., L.W. Kress, P. Lepper, and W.W. Heck. 1990. Ozone effects on the fatty acid composition of loblolly pine needles (Pinus taeda L.). New Phytol. 115:639–647.

    Article  CAS  Google Scholar 

  • Flammersfeld, U., and A. Wild. 1992. Changes in the constitution of thylakoid membranes in spruce needles during an open-top chamber experiment. Bot. Acta 105:348–354.

    CAS  Google Scholar 

  • Frank, R., and L. Logan. 1988. Pesticide and industrial chemical residues at the mouth of the Grand, Saugeen, and Thames Rivers, Ontario, Canada, 1981-1985. Arch. Environ. Contam. Toxicol. 17:741–754.

    Article  CAS  Google Scholar 

  • Fuerst, E. P., H.Y. Nakatani, A.D. Dodge, D. Penner, and C.J. Arntzen. 1985. Paraquat resistance in Conyza. Plant Physiol. 77:984–989.

    Article  PubMed  CAS  Google Scholar 

  • Garty, J., N. Kloog, Y. Cohen, R. Wolfson, and A. Karnieli. 1997. The effect of air pollution on the integrity of chlorophyll, spectral reflectance response, and on concentrations of nickel, vanadium, and sulphur in the lichen Ramalina duriaei (De Not.) Bagl. Environ. Res. 74: 174–187.

    Article  PubMed  CAS  Google Scholar 

  • Garty, J., O. Tamir, I. Hassid, A. Eshel, Y. Cohen, A. Karnieli, and L. Orlovsky. 2001. Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. J. Environ. Qual. 30:884–893.

    Article  PubMed  CAS  Google Scholar 

  • Geiken, B., J. Masojídek, M. Rizzuto, M.L. Pompili, and M.T. Giardi,. 1998. Incorporation of 35S methionin in higher plants reveals that stimulation of the Dl reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant Cell Environ. 21:1265–1273.

    Article  CAS  Google Scholar 

  • Georgieva, K., and H.K. Lichtenthaler. 1999. Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by chorophyll fluorescence. J. Plant. Physiol. 155:416–423.

    Article  CAS  Google Scholar 

  • Genty, B., J.-M. Briantais, and N. R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87–92.

    Article  CAS  Google Scholar 

  • Gimeno, B. S., V. Bermejo, R.A. Reinert, Y.B. Zheng, and J.D. Barnes. 1999. Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain. New Phytol. 144:245–260.

    Article  CAS  Google Scholar 

  • Govindjee. 1995. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant. Physiol. 22:131–160.

    Article  CAS  Google Scholar 

  • Greger, M., and E. Ogren. 1991. Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant. 83:129–135.

    Article  CAS  Google Scholar 

  • Grouselle, M., T. Grollier, A. Feurtet-Mazel, F. Ribeyre, and A. Boudou. 1995. Herbicide isoproturon-specific binding in the freshwater macrophyte Elodea densa: A single-cell fluorescence study. Ecotoxicol. Environ. Saf. 32:254–9.

    Article  PubMed  CAS  Google Scholar 

  • Guderian, R., D.T. Tingey, and R. Rabe. 1985. Effects of photochemical oxidants on plants, p. 129–333. In: R. Guderian (ed.) Air pollution by photochemical oxidants. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Guidi, L., G. Bongi, S. Ciompi, and G.F. Soldatini. 1999. In Vicia faba leaves photoinhibition from ozone fumigation in light precedes a decrease in quantum yield of functional PSII centres. J. Plant Physiol. 154:167–172.

    Article  CAS  Google Scholar 

  • Guidi, L., A. Panicucci, G. Lorenzini, and G.F. Soldatini. 1993. Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba. J. Plant Physiol. 141:545–550.

    Article  CAS  Google Scholar 

  • Guissé, B., A. Srivastava, and R. J. Strasser. 1995. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. Arch. Sci. Geneve 48:147–160.

    Google Scholar 

  • Harris, N., and A.D. Dodge. 1972. The effect of paraquat on flax cotyledon leaves: Physiological and biochemical changes. Planta 104:210–219.

    Article  CAS  Google Scholar 

  • Honeycutt, R. C., and D.W. Krogmann. 1972. Inhibition of chloroplast reactions with phenylmercuric acetate. Plant Physiol. 49:376–380.

    Article  PubMed  CAS  Google Scholar 

  • Havaux, M., R. J. Strasser, and H. Greppin. 1991. A theoretical and experimental analysis of the QP and QN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth. Res. 27:41–55.

    Article  CAS  Google Scholar 

  • Haynes, D., P.J. Ralph, J. Prange, and W.C. Dennison. 2000. The impact of the herbicide diuron on photosynthesis in three species of tropical seagrass. Mar. Pollut. Bull. 41:288–293.

    Article  CAS  Google Scholar 

  • Horváth, G., J.B. Arellano, M. Droppa, and M. Barón. 1998. Alterations in photosystem II electron transport as revealed by thermoluminescence of Cu-poisoned chloroplasts. Photosynth. Res. 57:175–182.

    Article  Google Scholar 

  • Hsu, B.-D. 1993. Evidence for the contribution of the S-state transitions of oxygen evolution to the initial phase of fluorescence induction. Photosynth. Res. 36:81–88.

    Article  CAS  Google Scholar 

  • Jegerschöld, C., J.B. Arellano, W.P. Schröder, P.J.M. Van Kan, M. Barón, and S. Styring. 1995. Cu(II) inhibition of the electron transfer through photosystem II studied by EPR spectroscopy. Biochem. 34:12747–12754.

    Article  Google Scholar 

  • Jiang, H., G.S. Howell, J.A. Flore. 1999. Efficacy of chlorophyll fluorescence as a viability test for freeze-stressed woody grape tissue. Can. J. Plant. Sci. 79:401–409.

    Article  Google Scholar 

  • Judy, B. M., W.R. Lower, F.A. Ireland, and G.F. Krause. 1991a. A seedling chlorophyll fluorescence toxicity assay, p. 146–158 In: J.W. Gorsuch, W.R. Lower, M.A. Lewis, and W. Wang (eds.) Plants for toxicity assessment: Second volume. ASTM, Philadelphia.

    Chapter  Google Scholar 

  • Judy, B. M., W.R. Lower, C.D. Miles, M.W. Thomas, and G.F. Krause. 1991b. Chlorophyll fluorescence of higher plant as an assay for toxicity assessment of soil and water, p. 308–318. In: W. Wang, J.W. Gorsuch, and W.R. Lower (eds.), Plants for toxicity assessment. ASTM, Philadelphia.

    Google Scholar 

  • Juneau, P., D. Dewez, S. Matsui, S.-G. Kim, and R. Popovic. 2001. Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry. Chemosphere 45:589–598.

    Article  PubMed  CAS  Google Scholar 

  • Juneau, P., A. El Berdey, and R. Popovic. 2002. PAM fluorometry in the determination of the sensitivity of Chlorella vuigaris, Selenastrum capricornutum, and Chlamydomonas reinhardtii to copper. Arch. Environ. Contam. Toxicol. 42:155–164.

    Article  PubMed  CAS  Google Scholar 

  • Juneau, P., and R. Popovic. 1999. Evidence for the rapid phytotoxicity and stress evaluation using the PAM fluorometric method : importance and future application. Ecotoxicol. 8:449–455.

    Article  CAS  Google Scholar 

  • Karukstis, K.K. 1991. Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus, p. 770–797. In: H. Scheer (ed.), Chlorophylls. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Keddy, C., J.C. Greene, and M.A. Bonnell. 1994. Review of whole organism bioassays for assessing soil, freshwater sediment, and freshwater quality at contaminated sites in Canada. Environment Canada, Scientific Series, No. 198. Environment Canada, Ottawa, Canada, 193 pp.

    Google Scholar 

  • Kellomaki, S., and K.Y. Wang. 1998. Daily and seasonal CO2 exchange in Scots pine grown under elevated O3 and CO2: Experiment and simulation. Plant Ecol. 136:229–248.

    Article  Google Scholar 

  • Kerstiens, G., and K.J. Lendzian. 1989. Interactions between ozone and plant cuticules. I. Ozone deposition and permeability. New Phytol. 112:13–9.

    Article  CAS  Google Scholar 

  • Kimimura, M., and S. Katoh. 1972. Studies on electron transport associated with photosystem I: I. Functional site of plastocyanin, inhibitory effects on HgCl2 on electron transport and plastocyanin in chloroplasts. Biochim. Biophys. Acta 283:279–292.

    Article  PubMed  CAS  Google Scholar 

  • Krause, G. H., and E. Weis. 1984. Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth. Res. 5:139–157.

    Article  CAS  Google Scholar 

  • Krause, G. H., and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313–349.

    Article  CAS  Google Scholar 

  • Kupper, H., F. Kupper, and M. Spiller. 1996. Environmental relevance of heavy metal-substituted chlorophyll using the example of water plants. J. Exp. Bot. 47:259–266.

    Article  Google Scholar 

  • Krupa, Z., G. Oquist, and N. Huner. 1993. The effects of cadmium on photosynthesis of Phaseolus vulgaris- a fluorescence analysis. Physiol. Plant. 88:626–630.

    Article  CAS  Google Scholar 

  • Lavorel, J., J. Breton, and M. Lutz. 1986. Methodological principles of measurement of light emitted by photosynthetic systems, p. 57–98. In: Govindjee, J. Amesz, and D.C. Fork (eds.), Light emission by plants and bacteria. Academic Press, San Diego, CA.

    Google Scholar 

  • Lavorel, J., and A.-L. Etienne. 1977. In vivo chlorophyll fluorescence, p. 203–268. In: J. Barber (ed.), Primary processes of photosynthesis. Elsevier/North-Holland Biomedical Press, Amsterdam.

    Google Scholar 

  • Lazár, D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta 1412:1–28.

    Article  PubMed  Google Scholar 

  • Lewis, M. A. 1995. Use of freshwater plants for phytotoxicity testing: A review. Environ. Pollut 87:319–336.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenthaler, H. K., and U. Rinderle. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. Crit. Rev. Anal. Chem. 19:29–85.

    Google Scholar 

  • Lidon, F.C., J.C. Ramalho, and F.S. Henriques. 1993. Copper inhibition of rice photosynthesis. J. Plant Physiol. 142:12–17.

    Article  CAS  Google Scholar 

  • Lockhardt, J. A. R., A. Samuel, and M.P. Greaves. 1989. p. 43–74. In: R.J. Hance, and K. Holly (eds.), Weed control handbook: Principles. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Lyngby, J.E., and H. Brix. 1982. Seasonal and environmental variation in cadmium, copper, lead and zinc concentrations in eelgrass (Zostera marina L.) in the Limfjord, Denmark. Aquat. Bot. 14:59–74.

    Article  CAS  Google Scholar 

  • Maciorowski, A. F., J.L. Sims, L.W. Little, and F.O. Gerrard. 1981. Bioassays, procedures and results. J. Water Pollut. Control Fed. 53:974–993.

    Google Scholar 

  • Malkin, S., P.A. Armond, M.A. Mooney, and D.C. Fork. 1981. Photosystem II photosynthetic unit size from fluorescence induction in leaves: Correlation to photosynthetic activity. Plant Physiol. 67:570–579.

    Article  PubMed  CAS  Google Scholar 

  • Market, B. (ed.) 1993. Plants as biomonitors: Indicators for heavy metals in the terrestrial environment. VCH Verlagsgesellschaft, Weinheim.

    Google Scholar 

  • Melis, A., and P.H. Homann. 1975. Kinetic analysis of the fluorescence induction in 3-(3,4-dichIorophenyl)-l,l-dimethylurea poisoned chloroplasts. Photochem. Photobio. 21:431–437.

    Article  CAS  Google Scholar 

  • Melis, A., and U. Schreiber. 1979. The kinetic relationship between the C-550 absorbance change, the reduction of Q(DA320) and the variable fluorescence yield changein chloroplasts at room temperature. Biochim. Biophys. Acta 547:47–57.

    Article  PubMed  CAS  Google Scholar 

  • Miles, D. 1991. The role of chlorophyll fluorescence as a bioassay for assessment of toxicity in plants, p. 297–307. In: W. Wang, J.W. Gorsuch, and W.R. Lower (eds.), Plants for toxicity assessment. ASTM, Philadelphia.

    Google Scholar 

  • Munday, J. C. M., and Govindjee. 1969. Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys. J. 9:1–21.

    Article  PubMed  CAS  Google Scholar 

  • Naessens, M., J.C. Leclerc, and C. Tran-Minh. 2000. Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol. Environ. Saf. 46:181–5.

    Article  PubMed  CAS  Google Scholar 

  • Neubauer, C., and U. Schreiber. 1987. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z. Natforsch. 42C:1246–1254.

    Google Scholar 

  • Nussbaum, S., M. Geissmann, P. Eggenberg, R.J. Strasser, and J. Fuhrer. 2001. Ozone sensitivity in herbaceous species as assessed by direct and modulated chlorophyll fluorescence techniques. J. Plant Physiol. 158:757–766.

    Article  CAS  Google Scholar 

  • Odasz-Albrigtsen, A. M., H. Tommervik, and P. Murphy. 2000. Decreased photosynthetic efficiency in plant species exposed to multiple airborne pollutants along the Russian-Norwegian border. Can. J. Bot. 78:1021–1033.

    CAS  Google Scholar 

  • Ouzounidou, G. 1993. Changes of photosynthetic activities in leaves as a result of Cu- treatment: Dose response relations in Silene and Thlaspi. Photosynthetica 29:455–462.

    CAS  Google Scholar 

  • Ouzounidou, G., M. Moustakas, and E.P. Eleftheriou. 1997. Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch. Environ. Contam. Toxicol. 32:154–160.

    Article  PubMed  CAS  Google Scholar 

  • Papageorgiou, G. 1975. Chlorophyll fluorescence: An intrinsic probe of photosynthesis, p. 319–371. In: Govindjee (ed.), Bioenergetics of photosynthesis. Academic Press, Inc., New York.

    Google Scholar 

  • Pell, E. J., C.D. Schlagenhaufer, and R.N. Arteca. 1997. Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol. Plant. 100:264–73.

    Article  CAS  Google Scholar 

  • Penuelas, J., M. Ribascarbo, M. Gonzalezmeler, and J. Azconbieto. 1994. Water status, photosynthetic pigments, C/N ratios and respiration rates of sitka spruce seedling exposed to 70-ppbv ozone for a summer. Environ. Exp. Bot. 34:443–9.

    Article  CAS  Google Scholar 

  • Percival, M.P., and N.R. Baker. 1991. Herbicides and photosynthesis, p. 1–26. In: M.P. Percival, and N.R. Baker (eds.), Herbicides. Elsevier Science Publishers, New York.

    Google Scholar 

  • Potter, L., J.P. Foot, S.J.M. Caporn, and J.A. Lee. 1996a. The effects of long-term elevated ozone concentrations on the growth and photosynthesis of Sphagnum recurvum and Polytrichum commune. New Phytol. 134:649–656.

    Article  CAS  Google Scholar 

  • Potter, L., J.P. Foot, S.J.M. Caporn, and J.A. Lee. 1996b. Responses of four Sphagnum species to acute ozone fumigation. J. Bryol. 19:19–32.

    Google Scholar 

  • Rai, L.C., J.P. Gaur, and H.D. Kumar. 1981. Phycology and heavy metals pollution. Biol .Rev. 56:99–152.

    Article  CAS  Google Scholar 

  • Ralph, P.J. 2000. Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence. Aquat. Bot. 66:141–152.

    Article  CAS  Google Scholar 

  • Ralph, P. J., and M.D. Burchett. 1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ. Pollut. 103:91–101.

    Article  CAS  Google Scholar 

  • Reichenauer, T. G., B.A. Goodman, P. Kostecki, and G. Soja. 1998. Ozone sensitivity in Triticum durum and T. aestivum with respect to leaf injury, photosynthetic activity and free radical content. Physiol. Plant. 104:681–686.

    Article  CAS  Google Scholar 

  • Renganathan, M., and S. Bose. 1989. Inhibition of primary photochemistry of photosystem II by copper in isolated pea chloroplasts. Biochim. Biophys. Acta. 974:247–253.

    Article  CAS  Google Scholar 

  • Rennenberg, H. 1984. The fate of excess sulfur in higher plants. Annu. Rev. Plant Physiol. 35:121–154.

    Article  CAS  Google Scholar 

  • Rohacek, K., and M. Bartak. 1999. Technique of the modulated chlorophyll fluorescence basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363.

    Article  CAS  Google Scholar 

  • Ruzycki, E. M., R.P. Axler, C.J. Owens, and T.B. Martin. 1998. Response of phytoplankton photosynthesis and growth to the aquatic herbicide hydrothol 191. Environ. Toxicol. Chem. 17:1530–1537.

    Article  CAS  Google Scholar 

  • Samson, G., and R. Popovic. 1988. Use of algal fluorescence for determination of phytotoxicity of heavy metals and pesticides as environmental pollutants. Ecotoxicol. Environ. Saf. 16: 272–278.

    Article  PubMed  CAS  Google Scholar 

  • Samson, G., and R. Popovic. 1990. Inhibitory effects of mercury on photosystem II photochemistry in Dunaliella tertiolecta under in vivo conditions. J. Photochem. Photobiol. B: Biology 5:303–310.

    Article  CAS  Google Scholar 

  • Samuelsson, G., G. Öquist, and P. Halldal. 1978. The variable chlorophyll a fluorescence as a measure of photosynthetic capacity in algae. Mitt. Int. Verein. Limnol. 2:207–215.

    Google Scholar 

  • Schmieden, U., and A. Wild. 1995. The contribution of ozone to forest decline. Physiol. Plant. 94:371–378.

    Article  CAS  Google Scholar 

  • Schreiber, U., U. Schliwa, and W. Bilger. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation tluorometer. Photosynth. Res. 10:51–62.

    Article  CAS  Google Scholar 

  • Shimazaki, K.-I., S.-W. Yu, T. Sakaki, and K. Tanaka. 1992. Differences between spinach and kidney bean plants in terms of sensitivity to fumigation with NO2. Plant Cell Physiol. 33: 267–273.

    CAS  Google Scholar 

  • Smillie, R. M., and S.E. Hetherington. 1983. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiol. 72:1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Stauber, J.L., and T.M. Florence. 1987. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 94:511–519.

    Article  CAS  Google Scholar 

  • Strand, M. 1995. Persistent effects of low concentrations of SO2 and NO2 on photosynthesis in Scots pine (Pinus sylvestris) needles. Physiol. Plant. 95:581–590.

    Article  CAS  Google Scholar 

  • Strasser, R. J., and Govindjee. 1991. The Fo and O-J-I-P fluorescence rise in higher plants and algae, p. 423–426. In: J.H. Argyroudi-Akoyunoglou (ed.), Regulation of chloroplast biogenesis. Plenum Press, New York.

    Google Scholar 

  • Strasser, R. J., A. Srivastava, and Govindjee. 1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photobiochem. Photobiophys. 61:32–42.

    Article  CAS  Google Scholar 

  • Strasser, B.J. 1997. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth. Res. 52:147–155.

    Article  CAS  Google Scholar 

  • Szigeti, Z., E. Pölös, and E. Lehoczki. 1988. Fluorescence properties of parquat resistant conyza leaves, p. 109–114. In: Lichtenthaler, H. K. (ed.) Applications of chlorophyll fluorescence. Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  • Trebst, A., and W. Draber. 1986. Inhibitors of photosystem II and the topology of the herbicide and QB binding polypeptide in the thylakoid membrane. Photosynth. Res. 10:381–392.

    Article  CAS  Google Scholar 

  • Van Coillie, R., P. Couture, and S.A.Visser. 1983. Use of algae in aquatic ecotoxicology, p. 488–502. In: J.O. Nriagu (ed), Aquatic toxicology, vol. 13. Wiley-Intersciences, New York.

    Google Scholar 

  • Van der Heever, J. A., and J.U. Grobbelaar. 1998. In vivo chlorophyll a fluorescence of Selenastrum capncomutum as a screening bioassay in toxicity studies. Arch. Environ. Contam. Toxicol. 35:281–286.

    Article  Google Scholar 

  • van Kooten, O., and J.F.H. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25:147–150.

    Article  Google Scholar 

  • Van Rensen, J. J. S. 1982. Molecular mechanisms of herbicide action near photosystem II. Physiol. Plant. 54:515–521.

    Article  Google Scholar 

  • Veeranjaneyulu, K., D.O. Charlebois, C.N. Nsoukpoekossi, and R.M. Leblanc. 1992. Sulfíte inhibition of photochemical activity of intact pea leaves. Photosynth. Res. 34:271–278.

    Article  CAS  Google Scholar 

  • Vernotte, C, A.L. Etienne, and J.-M. Briantais. 1979. Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim. Biophys. Acta 545:519–527.

    Article  PubMed  CAS  Google Scholar 

  • Vincent, W. F. 1980. Mechanisms of rapid photosynthetic adaptation in natural phytoplankton communities. II. Changes in photochemical capacity as measured by DCMU-induced chlorophyll fluorescence. J. Phycol. 16:568–577.

    Article  CAS  Google Scholar 

  • Walker, C.H., S.P. Hopkin, R.M. Sibly, and D.B. Peakall. 1996. Principles of Ecotoxicology. Taylor & Francis Inc., Bristol, USA. 321 pp.

    Google Scholar 

  • Walker, D.A., M.N. Sivak, R.T. Prinsley, and J.K. Cheeseborough. 1983. Simultaneous measurements of oscillations in oxygen evolution and chlorophyll fluorescence in leaf pieces. Plant Physiol. 73:542–549.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W. 1986. Toxicity tests of aquatic pollutants by using common duckweed. Environ. Pollut., Ser. B 11:1–4.

    Article  CAS  Google Scholar 

  • Wang, W. 1991. Litterature review on higher plants for toxicity testing. Water Air Soil Pollut. 59:381–400.

    Article  CAS  Google Scholar 

  • Watanabe, T., K. Machida, H. Suzuki, M. Kobayashi, and K. Honda. 1985. Photoelectrochemistry of metallochlorophylls. Coord. Chem. Rev. 64:207–224.

    Article  CAS  Google Scholar 

  • Watanabe, T., and M. Kobayashi. 1988. Chlorophylls as functional molecules in photosynthesis. Molecular composition in vivo and physical chemistry in vitro. Special Articles on Coordination Chemistry of Biologically Important Substances 4:383–395.

    Google Scholar 

  • Wellburn, A. R. 1990. Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol. 115:395–429.

    Article  CAS  Google Scholar 

  • Wilson, P. C., T. Whitwell, and S.J. Klaine. 1999. Phytotoxicity, uptake, and distribution of [14C] simazine in Canna hybrida ’yellow king humbeit’. Environ. Toxicol. Chem. 18:1462–1468.

    CAS  Google Scholar 

  • Wong, P.T.S., and P. Couture. 1986. Toxicity screening using phytoplankton, p. 79–100. In: B.J. Dutka, and G. Bitton (eds.) Toxicity testing using microorganisms, vol 2. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Woolhouse, H.W., 1983. Toxicity and tolerance in the responses of plants to metals, p. 245–300. In: O. Lange, P.S. Nobel, C.B. Osmond, and H. Zielgler (eds.), Encyclopedia of plant physiology, 12C. Springer-Verlag, Berlin.

    Google Scholar 

  • Xyländer, M., W. Fischer, and W. Braune. 1998. Bot. Acta. 111:467–473.

    Google Scholar 

  • Yocum, F.Y., and J.A. Guikema. 1977. Photophosphorylation associated with photosystem II.; Photosystem II cyclic photophosphorylation catalyzed by p-phenylenediamine. Plant Physiol. 59:33–37.

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama, T., H. Sasakawa, S. Ishizuka, and T. Totsuka. 1979. Absorption of atmospheric NO2 by plants and soils. II. Nitrite accumulation, nitrite reductase activity and diurnal changes of NO2 absorption in leaves. Soil Sci. Plant Nutr. 25:267–275.

    Article  CAS  Google Scholar 

  • Yruela, I., M. Alfonso, M. Barón, and R. Picorel. 2000. Copper effect on the protein composition of photosystem II. Physiol. Plant. 110:551–557.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Popovic, R., Dewez, D., Juneau, P. (2003). Applications of Chlorophyll Fluorescence in Ecotoxicology: Heavy Metals, Herbicides, and Air Pollutants. In: DeEll, J.R., Toivonen, P.M.A. (eds) Practical Applications of Chlorophyll Fluorescence in Plant Biology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0415-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0415-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5065-1

  • Online ISBN: 978-1-4615-0415-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics