Applications of Chlorophyll Fluorescence in Ecotoxicology: Heavy Metals, Herbicides, and Air Pollutants

  • Radovan Popovic
  • David Dewez
  • Philippe Juneau


Environmental stress factors, such as herbicides, heavy metals, and air pollutants, may produce deleterious effects on photosynthesis and consequently damage higher plant or algal growth. The inhibition of photosynthesis or biochemical processes linked to photosynthesis can represent the physiological state of the plant and therefore measurement of photosynthesis can be used as an indicator of environmental stress effects (Krause and Weis, 1984; Lichtenthaler and Rinderle, 1988; Bolhàr-Nordenkampf et al., 1989). Very early in environmental studies in photosynthesis it was concluded that measuring an induced change of the photosynthetic process could be useful to monitor the presence of environmental pollutants (Neubauer and Schreiber, 1987). It has been established that measurements of variable chlorophyll a fluorescence from intact plants offer several parameter values that are very useful for understanding the functioning of specific processes of photosynthesis (Govindjee, 1995). As a consequence, some effects of pollutants detected by the change of fluorescence parameters were found to be directly associated with the photosynthetic process (Van Coillie et al., 1983; Wong and Couture, 1986). Different algal species are used in studying pollutant effects or for routine bioassays based on growth rate or fluorescence emission (Blanck et al., 1984; Juneau et al., 2002).


Chlorophyll Fluorescence Fluorescence Yield Fluorescence Parameter Photosynthetic Electron Transport Fluorescence Induction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arsalane, W., G. Parésys, J.-C. Duval, C. Wilhelm, R. Conrad, and C. Büchel. 1993. A new fluorometric device to measure the in vivo chlorophyll a fluorescence yield in microalgae and its use as a herbicide monitor. Eur. J. Phycol. 28:247–52.CrossRefGoogle Scholar
  2. Atal, N., P.P. Saradhi, and P. Mohanty. 1991. Inhibition of the chloroplast photochemical reactions by treatment of wheat seedlings with low concentrations of cadmium: Analysis of electron transport activities and changes in fluorescence yield. Plant Cell Physiol. 32:943–951.Google Scholar
  3. Barón, M., J.B. Arellano, and J. López-Gorgé. 1995. Copper and photosystem II: a controversial relationship. Physiol. Plant. 94:174–180.CrossRefGoogle Scholar
  4. Barthélemy, X., R. Popovic, and F. Franck. 1997. Studies on the O-J-I-P transient of chlorophyll fluorescence in relation to photosystem II assembly and heterogeneity in plastids of greening barley. J. Photochem. Photobiol. B: Biology 39:213–218.CrossRefGoogle Scholar
  5. Batley, G.E. 1991. Current heavy metal status of Lake Macquarie, p. 18-27. In: J.H. Whitehead, R.W. Kidd, and H.A. Bridgman (eds.), Lake Macquarie: An environmental reappraisal. University of Newcastle, Callaghan, Australia.Google Scholar
  6. Beauregard, M., L. Morin, and R. Popovic. 1987. Sulfate inhibition of photosystem II oxygen evolving complex. Appl. Biochem. Biotechnol. 16:109–117.CrossRefGoogle Scholar
  7. Beauregard, M., and R. Popovic. 1988. Removal of 23 and 18 kDalton extrinsic polypeptides by sulfate in photosystem II particles. J. Plant Physiol. 133:615–619.CrossRefGoogle Scholar
  8. Bernier, M., R. Popovic, and R. Carpentier. 1993. Mercury inhibition at the donor side of photosystem II is reversed by chloride. FEBS Letters 321:19–23.PubMedCrossRefGoogle Scholar
  9. Bishop, W.E., and R.L. Perry. 1981. Development and evaluation of a flow-through growth inhibition test with duckweed (Lemna minor). Proc. 4th Annual Symposium on Aquatic Toxicology, pp 238–271.Google Scholar
  10. Blanck, H., G. Wallin, and S.-A. Wängberg. 1984. Species-dependent variation in algal sensitivity to chemical compounds. Ecotoxicol. Environ. Saf. 8:339–351.PubMedCrossRefGoogle Scholar
  11. Bolhàr-Nordenkampf, H. R., S.P. Long, N.R. Baker, G. ×quist, U. Schreiber, and E.G. Lechner. 1989. Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: a review of current instrumentation. Funct. Ecol. 3:497–514.CrossRefGoogle Scholar
  12. Bowyer, J. R., P. Camilleri, and W.F. Vermaas. 1991. Photosystem II and its interaction with herbicides, p. 27– 85. In: M.P. Percival, and N.R. Baker (eds.) Herbicides. Elsevier Science Publishers, New York.Google Scholar
  13. Brack, W., and H. Frank. 1998. Chlorophyll a fluorescence: A tool for the investigation of toxic effects in the photosynthetic apparatus. Ecotoxicol. Environ. Saf. 40:34–41.PubMedCrossRefGoogle Scholar
  14. Calatayud, A., M.J. Sanz, E. Calvo, E. Barreno, and S. Del Valle-Tascón. 1996. Relationship between ambient stress and chlorophyll a fluorescence in Parmelia quercina (Will.) Vain. intact thalli from northern Castellón (Spain). Lichenologist 28:49–65.Google Scholar
  15. Calatayud, A., P.J. Temple, and E. Barreno. 2000. Chlorophyll a fluorescence emission, xanthophyll cycle activity, and the net photosynthetic rate responses to ozone in some foliose and fruticose lichen species. Photosynthetica 38:281–286.CrossRefGoogle Scholar
  16. Calatayud, A., and E. Barreno. 2001. Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ. Pollut. 115:283–289.PubMedCrossRefGoogle Scholar
  17. Calatayud, A., J.W. Alvarado, D.J. Ramirez, and E. Barreno. 2002a. Effects of ozone on photosynthetic CO2 exchange chlorophyll a fluorescence and antioxidant systems in lettuce leaves. Physiol. Plant 116:308–316.CrossRefGoogle Scholar
  18. Calatayud, A., J.W. Alvarado, and E. Barreno. 2002b. Differences in ozone sensitivity in three varieties of cabbage (Brassica oleracea L.) in rural Mediterranean area. J. Plant Phys. (in press).Google Scholar
  19. Campbell, D., V. Hurry, A.K. Clarke, P. Gustafsson, and G. Öquist. 1998. Microbiol. Mol. Biol. Rev. 62:667–683.PubMedGoogle Scholar
  20. Carrasco-Rodriguez, J. L., and S. Del Valle-Tascon. 2001. Impact of elevated ozone on chlorophyll a fluorescence in field-grown oat (Avena sativa). Environ. Exp. Bot. 45:133–142.PubMedCrossRefGoogle Scholar
  21. Chappelka, A. H., and P.H. Freer-Smith. 1995. Predisposition of trees by air pollutants to low temperatures and moisture stress. Environ. Pollut. 87:105–117.PubMedCrossRefGoogle Scholar
  22. Clijsters, H., and F. Van Assche. 1985. Inhibition of photosynthesis by heavy metals. Photosynth. Res 7:31–40.CrossRefGoogle Scholar
  23. Conrad, R., C. Büchel, C. Wilhelm, W. Arsalane, C. Berkaloff, and J.-C. Duval. 1993. Changes in yield of in-vivo fluorescence of chlorophyll a as a tool for selective herbicide monitoring. J. Appl. Phycol. 5:505–16.CrossRefGoogle Scholar
  24. Couture, P., S.A. Visser, R. van Coillie, and C. Blaise. 1985. Algal bioassays: their significance in monitoring water quality with respect to nutrients and toxicants. Schweiz. Z.Hydrol. 47: 127–158.CrossRefGoogle Scholar
  25. Critchley, C. 1998. Photoinhibition, p. 264–272 . In: A.S. Raghavendra (ed.) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, UK.Google Scholar
  26. Cvetkovic, A.D., G. Samson, P. Couture, and R. Popovic. 1991. Study of dependency between culture growth and photosynthetic efficiency measured by fluorescence induction in Selenastrum capricornutum inhibited by copper. Ecotoxicol. Environ. Saf. 22:127–132.PubMedCrossRefGoogle Scholar
  27. De Filippis, L.F., and C.K. Pallaghy. 1994. Heavy metals: sources and biological effects, p. 32–77. In: L.C. Rai, J.P. Caur, and C.J. Soeder (eds.), Algae and water pollution: Advances in limnology series, vol. 42. Schweizerbart, Stuttgart.Google Scholar
  28. Deltoro, V. I., C. Gimeno, A. Calatayud, and E. Barreno. 1999. Effects of SO2 fumigations on photosynthetic CO2 gas exchange, chlorophyll a fluorescence emission and antioxidant enzymes in the lichens Evernia prunastri and Ramalina farinacea. Physiol. Plant. 105: 648–54.CrossRefGoogle Scholar
  29. Dewez, D., P. Eullaffroy, and R. Popovic. 2001. L’utilisation de plante comme outils de mise en evidence de la pollution des produits phytosanitaires, p. 133–140. In: M. Couderchet, P. Eullaffroy, and G. Vernet (eds.) Produits phytosanitaires. Analyse, résidus, metabolites, écotoxicologie, modes d’action, transfert. Presses Universitaires de Reims, Reims, France.Google Scholar
  30. Dewez, D., M. Marchand, P. Eullaffroy, and R. Popovic. 2002. Evaluation of diuron derivates effects on Lemna gibba by using fluorescence toxicity index. Environ. Toxicol. 17:493–501.PubMedCrossRefGoogle Scholar
  31. El Jay, A., J.-M. Ducruet, J.-C. Duval, and J.P. Pelletier. 1997. A high-sensitivity chlorophyll fluorescence assay for monitoring herbicide inhibition of photosystem II in the chlorophyte Selenastrum capricornutum: Comparison with effect on cell growth. Arch. Hydrobiol. 140:273–86.Google Scholar
  32. Fangmeier, A., L.W. Kress, P. Lepper, and W.W. Heck. 1990. Ozone effects on the fatty acid composition of loblolly pine needles (Pinus taeda L.). New Phytol. 115:639–647.CrossRefGoogle Scholar
  33. Flammersfeld, U., and A. Wild. 1992. Changes in the constitution of thylakoid membranes in spruce needles during an open-top chamber experiment. Bot. Acta 105:348–354.Google Scholar
  34. Frank, R., and L. Logan. 1988. Pesticide and industrial chemical residues at the mouth of the Grand, Saugeen, and Thames Rivers, Ontario, Canada, 1981-1985. Arch. Environ. Contam. Toxicol. 17:741–754.CrossRefGoogle Scholar
  35. Fuerst, E. P., H.Y. Nakatani, A.D. Dodge, D. Penner, and C.J. Arntzen. 1985. Paraquat resistance in Conyza. Plant Physiol. 77:984–989.PubMedCrossRefGoogle Scholar
  36. Garty, J., N. Kloog, Y. Cohen, R. Wolfson, and A. Karnieli. 1997. The effect of air pollution on the integrity of chlorophyll, spectral reflectance response, and on concentrations of nickel, vanadium, and sulphur in the lichen Ramalina duriaei (De Not.) Bagl. Environ. Res. 74: 174–187.PubMedCrossRefGoogle Scholar
  37. Garty, J., O. Tamir, I. Hassid, A. Eshel, Y. Cohen, A. Karnieli, and L. Orlovsky. 2001. Photosynthesis, chlorophyll integrity, and spectral reflectance in lichens exposed to air pollution. J. Environ. Qual. 30:884–893.PubMedCrossRefGoogle Scholar
  38. Geiken, B., J. Masojídek, M. Rizzuto, M.L. Pompili, and M.T. Giardi,. 1998. Incorporation of 35S methionin in higher plants reveals that stimulation of the Dl reaction centre II protein turnover accompanies tolerance to heavy metal stress. Plant Cell Environ. 21:1265–1273.CrossRefGoogle Scholar
  39. Georgieva, K., and H.K. Lichtenthaler. 1999. Photosynthetic activity and acclimation ability of pea plants to low and high temperature treatment as studied by chorophyll fluorescence. J. Plant. Physiol. 155:416–423.CrossRefGoogle Scholar
  40. Genty, B., J.-M. Briantais, and N. R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990:87–92.CrossRefGoogle Scholar
  41. Gimeno, B. S., V. Bermejo, R.A. Reinert, Y.B. Zheng, and J.D. Barnes. 1999. Adverse effects of ambient ozone on watermelon yield and physiology at a rural site in Eastern Spain. New Phytol. 144:245–260.CrossRefGoogle Scholar
  42. Govindjee. 1995. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust. J. Plant. Physiol. 22:131–160.CrossRefGoogle Scholar
  43. Greger, M., and E. Ogren. 1991. Direct and indirect effects of Cd2+ on photosynthesis in sugar beet (Beta vulgaris). Physiol. Plant. 83:129–135.CrossRefGoogle Scholar
  44. Grouselle, M., T. Grollier, A. Feurtet-Mazel, F. Ribeyre, and A. Boudou. 1995. Herbicide isoproturon-specific binding in the freshwater macrophyte Elodea densa: A single-cell fluorescence study. Ecotoxicol. Environ. Saf. 32:254–9.PubMedCrossRefGoogle Scholar
  45. Guderian, R., D.T. Tingey, and R. Rabe. 1985. Effects of photochemical oxidants on plants, p. 129–333. In: R. Guderian (ed.) Air pollution by photochemical oxidants. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  46. Guidi, L., G. Bongi, S. Ciompi, and G.F. Soldatini. 1999. In Vicia faba leaves photoinhibition from ozone fumigation in light precedes a decrease in quantum yield of functional PSII centres. J. Plant Physiol. 154:167–172.CrossRefGoogle Scholar
  47. Guidi, L., A. Panicucci, G. Lorenzini, and G.F. Soldatini. 1993. Ozone-induced changes in chlorophyll fluorescence kinetics and CO2 assimilation in Vicia faba. J. Plant Physiol. 141:545–550.CrossRefGoogle Scholar
  48. Guissé, B., A. Srivastava, and R. J. Strasser. 1995. The polyphasic rise of the chlorophyll a fluorescence (O-K-J-I-P) in heat-stressed leaves. Arch. Sci. Geneve 48:147–160.Google Scholar
  49. Harris, N., and A.D. Dodge. 1972. The effect of paraquat on flax cotyledon leaves: Physiological and biochemical changes. Planta 104:210–219.CrossRefGoogle Scholar
  50. Honeycutt, R. C., and D.W. Krogmann. 1972. Inhibition of chloroplast reactions with phenylmercuric acetate. Plant Physiol. 49:376–380.PubMedCrossRefGoogle Scholar
  51. Havaux, M., R. J. Strasser, and H. Greppin. 1991. A theoretical and experimental analysis of the QP and QN coefficients of chlorophyll fluorescence quenching and their relation to photochemical and nonphotochemical events. Photosynth. Res. 27:41–55.CrossRefGoogle Scholar
  52. Haynes, D., P.J. Ralph, J. Prange, and W.C. Dennison. 2000. The impact of the herbicide diuron on photosynthesis in three species of tropical seagrass. Mar. Pollut. Bull. 41:288–293.CrossRefGoogle Scholar
  53. Horváth, G., J.B. Arellano, M. Droppa, and M. Barón. 1998. Alterations in photosystem II electron transport as revealed by thermoluminescence of Cu-poisoned chloroplasts. Photosynth. Res. 57:175–182.CrossRefGoogle Scholar
  54. Hsu, B.-D. 1993. Evidence for the contribution of the S-state transitions of oxygen evolution to the initial phase of fluorescence induction. Photosynth. Res. 36:81–88.CrossRefGoogle Scholar
  55. Jegerschöld, C., J.B. Arellano, W.P. Schröder, P.J.M. Van Kan, M. Barón, and S. Styring. 1995. Cu(II) inhibition of the electron transfer through photosystem II studied by EPR spectroscopy. Biochem. 34:12747–12754.CrossRefGoogle Scholar
  56. Jiang, H., G.S. Howell, J.A. Flore. 1999. Efficacy of chlorophyll fluorescence as a viability test for freeze-stressed woody grape tissue. Can. J. Plant. Sci. 79:401–409.CrossRefGoogle Scholar
  57. Judy, B. M., W.R. Lower, F.A. Ireland, and G.F. Krause. 1991a. A seedling chlorophyll fluorescence toxicity assay, p. 146–158 In: J.W. Gorsuch, W.R. Lower, M.A. Lewis, and W. Wang (eds.) Plants for toxicity assessment: Second volume. ASTM, Philadelphia.CrossRefGoogle Scholar
  58. Judy, B. M., W.R. Lower, C.D. Miles, M.W. Thomas, and G.F. Krause. 1991b. Chlorophyll fluorescence of higher plant as an assay for toxicity assessment of soil and water, p. 308–318. In: W. Wang, J.W. Gorsuch, and W.R. Lower (eds.), Plants for toxicity assessment. ASTM, Philadelphia.Google Scholar
  59. Juneau, P., D. Dewez, S. Matsui, S.-G. Kim, and R. Popovic. 2001. Evaluation of different algal species sensitivity to mercury and metolachlor by PAM-fluorometry. Chemosphere 45:589–598.PubMedCrossRefGoogle Scholar
  60. Juneau, P., A. El Berdey, and R. Popovic. 2002. PAM fluorometry in the determination of the sensitivity of Chlorella vuigaris, Selenastrum capricornutum, and Chlamydomonas reinhardtii to copper. Arch. Environ. Contam. Toxicol. 42:155–164.PubMedCrossRefGoogle Scholar
  61. Juneau, P., and R. Popovic. 1999. Evidence for the rapid phytotoxicity and stress evaluation using the PAM fluorometric method : importance and future application. Ecotoxicol. 8:449–455.CrossRefGoogle Scholar
  62. Karukstis, K.K. 1991. Chlorophyll fluorescence as a physiological probe of the photosynthetic apparatus, p. 770–797. In: H. Scheer (ed.), Chlorophylls. CRC Press, Boca Raton, Florida.Google Scholar
  63. Keddy, C., J.C. Greene, and M.A. Bonnell. 1994. Review of whole organism bioassays for assessing soil, freshwater sediment, and freshwater quality at contaminated sites in Canada. Environment Canada, Scientific Series, No. 198. Environment Canada, Ottawa, Canada, 193 pp.Google Scholar
  64. Kellomaki, S., and K.Y. Wang. 1998. Daily and seasonal CO2 exchange in Scots pine grown under elevated O3 and CO2: Experiment and simulation. Plant Ecol. 136:229–248.CrossRefGoogle Scholar
  65. Kerstiens, G., and K.J. Lendzian. 1989. Interactions between ozone and plant cuticules. I. Ozone deposition and permeability. New Phytol. 112:13–9.CrossRefGoogle Scholar
  66. Kimimura, M., and S. Katoh. 1972. Studies on electron transport associated with photosystem I: I. Functional site of plastocyanin, inhibitory effects on HgCl2 on electron transport and plastocyanin in chloroplasts. Biochim. Biophys. Acta 283:279–292.PubMedCrossRefGoogle Scholar
  67. Krause, G. H., and E. Weis. 1984. Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth. Res. 5:139–157.CrossRefGoogle Scholar
  68. Krause, G. H., and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313–349.CrossRefGoogle Scholar
  69. Kupper, H., F. Kupper, and M. Spiller. 1996. Environmental relevance of heavy metal-substituted chlorophyll using the example of water plants. J. Exp. Bot. 47:259–266.CrossRefGoogle Scholar
  70. Krupa, Z., G. Oquist, and N. Huner. 1993. The effects of cadmium on photosynthesis of Phaseolus vulgaris- a fluorescence analysis. Physiol. Plant. 88:626–630.CrossRefGoogle Scholar
  71. Lavorel, J., J. Breton, and M. Lutz. 1986. Methodological principles of measurement of light emitted by photosynthetic systems, p. 57–98. In: Govindjee, J. Amesz, and D.C. Fork (eds.), Light emission by plants and bacteria. Academic Press, San Diego, CA.Google Scholar
  72. Lavorel, J., and A.-L. Etienne. 1977. In vivo chlorophyll fluorescence, p. 203–268. In: J. Barber (ed.), Primary processes of photosynthesis. Elsevier/North-Holland Biomedical Press, Amsterdam.Google Scholar
  73. Lazár, D. 1999. Chlorophyll a fluorescence induction. Biochim. Biophys. Acta 1412:1–28.PubMedCrossRefGoogle Scholar
  74. Lewis, M. A. 1995. Use of freshwater plants for phytotoxicity testing: A review. Environ. Pollut 87:319–336.PubMedCrossRefGoogle Scholar
  75. Lichtenthaler, H. K., and U. Rinderle. 1988. The role of chlorophyll fluorescence in the detection of stress conditions in plants. Crit. Rev. Anal. Chem. 19:29–85.Google Scholar
  76. Lidon, F.C., J.C. Ramalho, and F.S. Henriques. 1993. Copper inhibition of rice photosynthesis. J. Plant Physiol. 142:12–17.CrossRefGoogle Scholar
  77. Lockhardt, J. A. R., A. Samuel, and M.P. Greaves. 1989. p. 43–74. In: R.J. Hance, and K. Holly (eds.), Weed control handbook: Principles. Blackwell Scientific Publications, Oxford.Google Scholar
  78. Lyngby, J.E., and H. Brix. 1982. Seasonal and environmental variation in cadmium, copper, lead and zinc concentrations in eelgrass (Zostera marina L.) in the Limfjord, Denmark. Aquat. Bot. 14:59–74.CrossRefGoogle Scholar
  79. Maciorowski, A. F., J.L. Sims, L.W. Little, and F.O. Gerrard. 1981. Bioassays, procedures and results. J. Water Pollut. Control Fed. 53:974–993.Google Scholar
  80. Malkin, S., P.A. Armond, M.A. Mooney, and D.C. Fork. 1981. Photosystem II photosynthetic unit size from fluorescence induction in leaves: Correlation to photosynthetic activity. Plant Physiol. 67:570–579.PubMedCrossRefGoogle Scholar
  81. Market, B. (ed.) 1993. Plants as biomonitors: Indicators for heavy metals in the terrestrial environment. VCH Verlagsgesellschaft, Weinheim.Google Scholar
  82. Melis, A., and P.H. Homann. 1975. Kinetic analysis of the fluorescence induction in 3-(3,4-dichIorophenyl)-l,l-dimethylurea poisoned chloroplasts. Photochem. Photobio. 21:431–437.CrossRefGoogle Scholar
  83. Melis, A., and U. Schreiber. 1979. The kinetic relationship between the C-550 absorbance change, the reduction of Q(DA320) and the variable fluorescence yield changein chloroplasts at room temperature. Biochim. Biophys. Acta 547:47–57.PubMedCrossRefGoogle Scholar
  84. Miles, D. 1991. The role of chlorophyll fluorescence as a bioassay for assessment of toxicity in plants, p. 297–307. In: W. Wang, J.W. Gorsuch, and W.R. Lower (eds.), Plants for toxicity assessment. ASTM, Philadelphia.Google Scholar
  85. Munday, J. C. M., and Govindjee. 1969. Light-induced changes in the fluorescence yield of chlorophyll a in vivo. III. The dip and the peak in the fluorescence transient of Chlorella pyrenoidosa. Biophys. J. 9:1–21.PubMedCrossRefGoogle Scholar
  86. Naessens, M., J.C. Leclerc, and C. Tran-Minh. 2000. Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. Ecotoxicol. Environ. Saf. 46:181–5.PubMedCrossRefGoogle Scholar
  87. Neubauer, C., and U. Schreiber. 1987. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side. Z. Natforsch. 42C:1246–1254.Google Scholar
  88. Nussbaum, S., M. Geissmann, P. Eggenberg, R.J. Strasser, and J. Fuhrer. 2001. Ozone sensitivity in herbaceous species as assessed by direct and modulated chlorophyll fluorescence techniques. J. Plant Physiol. 158:757–766.CrossRefGoogle Scholar
  89. Odasz-Albrigtsen, A. M., H. Tommervik, and P. Murphy. 2000. Decreased photosynthetic efficiency in plant species exposed to multiple airborne pollutants along the Russian-Norwegian border. Can. J. Bot. 78:1021–1033.Google Scholar
  90. Ouzounidou, G. 1993. Changes of photosynthetic activities in leaves as a result of Cu- treatment: Dose response relations in Silene and Thlaspi. Photosynthetica 29:455–462.Google Scholar
  91. Ouzounidou, G., M. Moustakas, and E.P. Eleftheriou. 1997. Physiological and ultrastructural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch. Environ. Contam. Toxicol. 32:154–160.PubMedCrossRefGoogle Scholar
  92. Papageorgiou, G. 1975. Chlorophyll fluorescence: An intrinsic probe of photosynthesis, p. 319–371. In: Govindjee (ed.), Bioenergetics of photosynthesis. Academic Press, Inc., New York.Google Scholar
  93. Pell, E. J., C.D. Schlagenhaufer, and R.N. Arteca. 1997. Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol. Plant. 100:264–73.CrossRefGoogle Scholar
  94. Penuelas, J., M. Ribascarbo, M. Gonzalezmeler, and J. Azconbieto. 1994. Water status, photosynthetic pigments, C/N ratios and respiration rates of sitka spruce seedling exposed to 70-ppbv ozone for a summer. Environ. Exp. Bot. 34:443–9.CrossRefGoogle Scholar
  95. Percival, M.P., and N.R. Baker. 1991. Herbicides and photosynthesis, p. 1–26. In: M.P. Percival, and N.R. Baker (eds.), Herbicides. Elsevier Science Publishers, New York.Google Scholar
  96. Potter, L., J.P. Foot, S.J.M. Caporn, and J.A. Lee. 1996a. The effects of long-term elevated ozone concentrations on the growth and photosynthesis of Sphagnum recurvum and Polytrichum commune. New Phytol. 134:649–656.CrossRefGoogle Scholar
  97. Potter, L., J.P. Foot, S.J.M. Caporn, and J.A. Lee. 1996b. Responses of four Sphagnum species to acute ozone fumigation. J. Bryol. 19:19–32.Google Scholar
  98. Rai, L.C., J.P. Gaur, and H.D. Kumar. 1981. Phycology and heavy metals pollution. Biol .Rev. 56:99–152.CrossRefGoogle Scholar
  99. Ralph, P.J. 2000. Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence. Aquat. Bot. 66:141–152.CrossRefGoogle Scholar
  100. Ralph, P. J., and M.D. Burchett. 1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ. Pollut. 103:91–101.CrossRefGoogle Scholar
  101. Reichenauer, T. G., B.A. Goodman, P. Kostecki, and G. Soja. 1998. Ozone sensitivity in Triticum durum and T. aestivum with respect to leaf injury, photosynthetic activity and free radical content. Physiol. Plant. 104:681–686.CrossRefGoogle Scholar
  102. Renganathan, M., and S. Bose. 1989. Inhibition of primary photochemistry of photosystem II by copper in isolated pea chloroplasts. Biochim. Biophys. Acta. 974:247–253.CrossRefGoogle Scholar
  103. Rennenberg, H. 1984. The fate of excess sulfur in higher plants. Annu. Rev. Plant Physiol. 35:121–154.CrossRefGoogle Scholar
  104. Rohacek, K., and M. Bartak. 1999. Technique of the modulated chlorophyll fluorescence basic concepts, useful parameters, and some applications. Photosynthetica 37:339–363.CrossRefGoogle Scholar
  105. Ruzycki, E. M., R.P. Axler, C.J. Owens, and T.B. Martin. 1998. Response of phytoplankton photosynthesis and growth to the aquatic herbicide hydrothol 191. Environ. Toxicol. Chem. 17:1530–1537.CrossRefGoogle Scholar
  106. Samson, G., and R. Popovic. 1988. Use of algal fluorescence for determination of phytotoxicity of heavy metals and pesticides as environmental pollutants. Ecotoxicol. Environ. Saf. 16: 272–278.PubMedCrossRefGoogle Scholar
  107. Samson, G., and R. Popovic. 1990. Inhibitory effects of mercury on photosystem II photochemistry in Dunaliella tertiolecta under in vivo conditions. J. Photochem. Photobiol. B: Biology 5:303–310.CrossRefGoogle Scholar
  108. Samuelsson, G., G. Öquist, and P. Halldal. 1978. The variable chlorophyll a fluorescence as a measure of photosynthetic capacity in algae. Mitt. Int. Verein. Limnol. 2:207–215.Google Scholar
  109. Schmieden, U., and A. Wild. 1995. The contribution of ozone to forest decline. Physiol. Plant. 94:371–378.CrossRefGoogle Scholar
  110. Schreiber, U., U. Schliwa, and W. Bilger. 1986. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation tluorometer. Photosynth. Res. 10:51–62.CrossRefGoogle Scholar
  111. Shimazaki, K.-I., S.-W. Yu, T. Sakaki, and K. Tanaka. 1992. Differences between spinach and kidney bean plants in terms of sensitivity to fumigation with NO2. Plant Cell Physiol. 33: 267–273.Google Scholar
  112. Smillie, R. M., and S.E. Hetherington. 1983. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiol. 72:1043–1050.PubMedCrossRefGoogle Scholar
  113. Stauber, J.L., and T.M. Florence. 1987. Mechanism of toxicity of ionic copper and copper complexes to algae. Mar. Biol. 94:511–519.CrossRefGoogle Scholar
  114. Strand, M. 1995. Persistent effects of low concentrations of SO2 and NO2 on photosynthesis in Scots pine (Pinus sylvestris) needles. Physiol. Plant. 95:581–590.CrossRefGoogle Scholar
  115. Strasser, R. J., and Govindjee. 1991. The Fo and O-J-I-P fluorescence rise in higher plants and algae, p. 423–426. In: J.H. Argyroudi-Akoyunoglou (ed.), Regulation of chloroplast biogenesis. Plenum Press, New York.Google Scholar
  116. Strasser, R. J., A. Srivastava, and Govindjee. 1995. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photobiochem. Photobiophys. 61:32–42.CrossRefGoogle Scholar
  117. Strasser, B.J. 1997. Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth. Res. 52:147–155.CrossRefGoogle Scholar
  118. Szigeti, Z., E. Pölös, and E. Lehoczki. 1988. Fluorescence properties of parquat resistant conyza leaves, p. 109–114. In: Lichtenthaler, H. K. (ed.) Applications of chlorophyll fluorescence. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
  119. Trebst, A., and W. Draber. 1986. Inhibitors of photosystem II and the topology of the herbicide and QB binding polypeptide in the thylakoid membrane. Photosynth. Res. 10:381–392.CrossRefGoogle Scholar
  120. Van Coillie, R., P. Couture, and S.A.Visser. 1983. Use of algae in aquatic ecotoxicology, p. 488–502. In: J.O. Nriagu (ed), Aquatic toxicology, vol. 13. Wiley-Intersciences, New York.Google Scholar
  121. Van der Heever, J. A., and J.U. Grobbelaar. 1998. In vivo chlorophyll a fluorescence of Selenastrum capncomutum as a screening bioassay in toxicity studies. Arch. Environ. Contam. Toxicol. 35:281–286.CrossRefGoogle Scholar
  122. van Kooten, O., and J.F.H. Snel. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25:147–150.CrossRefGoogle Scholar
  123. Van Rensen, J. J. S. 1982. Molecular mechanisms of herbicide action near photosystem II. Physiol. Plant. 54:515–521.CrossRefGoogle Scholar
  124. Veeranjaneyulu, K., D.O. Charlebois, C.N. Nsoukpoekossi, and R.M. Leblanc. 1992. Sulfíte inhibition of photochemical activity of intact pea leaves. Photosynth. Res. 34:271–278.CrossRefGoogle Scholar
  125. Vernotte, C, A.L. Etienne, and J.-M. Briantais. 1979. Quenching of the system II chlorophyll fluorescence by the plastoquinone pool. Biochim. Biophys. Acta 545:519–527.PubMedCrossRefGoogle Scholar
  126. Vincent, W. F. 1980. Mechanisms of rapid photosynthetic adaptation in natural phytoplankton communities. II. Changes in photochemical capacity as measured by DCMU-induced chlorophyll fluorescence. J. Phycol. 16:568–577.CrossRefGoogle Scholar
  127. Walker, C.H., S.P. Hopkin, R.M. Sibly, and D.B. Peakall. 1996. Principles of Ecotoxicology. Taylor & Francis Inc., Bristol, USA. 321 pp.Google Scholar
  128. Walker, D.A., M.N. Sivak, R.T. Prinsley, and J.K. Cheeseborough. 1983. Simultaneous measurements of oscillations in oxygen evolution and chlorophyll fluorescence in leaf pieces. Plant Physiol. 73:542–549.PubMedCrossRefGoogle Scholar
  129. Wang, W. 1986. Toxicity tests of aquatic pollutants by using common duckweed. Environ. Pollut., Ser. B 11:1–4.CrossRefGoogle Scholar
  130. Wang, W. 1991. Litterature review on higher plants for toxicity testing. Water Air Soil Pollut. 59:381–400.CrossRefGoogle Scholar
  131. Watanabe, T., K. Machida, H. Suzuki, M. Kobayashi, and K. Honda. 1985. Photoelectrochemistry of metallochlorophylls. Coord. Chem. Rev. 64:207–224.CrossRefGoogle Scholar
  132. Watanabe, T., and M. Kobayashi. 1988. Chlorophylls as functional molecules in photosynthesis. Molecular composition in vivo and physical chemistry in vitro. Special Articles on Coordination Chemistry of Biologically Important Substances 4:383–395.Google Scholar
  133. Wellburn, A. R. 1990. Why are atmospheric oxides of nitrogen usually phytotoxic and not alternative fertilizers? New Phytol. 115:395–429.CrossRefGoogle Scholar
  134. Wilson, P. C., T. Whitwell, and S.J. Klaine. 1999. Phytotoxicity, uptake, and distribution of [14C] simazine in Canna hybrida ’yellow king humbeit’. Environ. Toxicol. Chem. 18:1462–1468.Google Scholar
  135. Wong, P.T.S., and P. Couture. 1986. Toxicity screening using phytoplankton, p. 79–100. In: B.J. Dutka, and G. Bitton (eds.) Toxicity testing using microorganisms, vol 2. CRC Press, Boca Raton, FL.Google Scholar
  136. Woolhouse, H.W., 1983. Toxicity and tolerance in the responses of plants to metals, p. 245–300. In: O. Lange, P.S. Nobel, C.B. Osmond, and H. Zielgler (eds.), Encyclopedia of plant physiology, 12C. Springer-Verlag, Berlin.Google Scholar
  137. Xyländer, M., W. Fischer, and W. Braune. 1998. Bot. Acta. 111:467–473.Google Scholar
  138. Yocum, F.Y., and J.A. Guikema. 1977. Photophosphorylation associated with photosystem II.; Photosystem II cyclic photophosphorylation catalyzed by p-phenylenediamine. Plant Physiol. 59:33–37.PubMedCrossRefGoogle Scholar
  139. Yoneyama, T., H. Sasakawa, S. Ishizuka, and T. Totsuka. 1979. Absorption of atmospheric NO2 by plants and soils. II. Nitrite accumulation, nitrite reductase activity and diurnal changes of NO2 absorption in leaves. Soil Sci. Plant Nutr. 25:267–275.CrossRefGoogle Scholar
  140. Yruela, I., M. Alfonso, M. Barón, and R. Picorel. 2000. Copper effect on the protein composition of photosystem II. Physiol. Plant. 110:551–557.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Radovan Popovic
    • 1
  • David Dewez
    • 1
  • Philippe Juneau
    • 2
  1. 1.Département de Chimie et de Biochimie, TOXENUniversité du Québec à MontréalCanada
  2. 2.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations