Skip to main content

A Role for the Phosphatidylinositol-3-Kinase Pathway in Preconditioning

  • Chapter
Book cover Myocardial Ischemia and Preconditioning

Summary

Preconditioning has been shown to reduce cell death, although the mechanism responsible is still unclear. Activation of phosphatidylinositol-3-kinase (PI3K) has been shown to be cardioprotective. This paper will review the data suggesting a role for the PI3K pathways in cardioprotection and preconditioning. The PI3K pathway is activated by preconditioning and inhibition of PI3K blocks the protective effects of preconditioning. Thus, enhanced cell survival via activation of PI3K appears to be important in preconditioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Murry C, Jennings R, Reimer K. 1986. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  2. Steenbergen C, Perlman M, London R, Murphy E. 1993. Mechanism of preconditioning: ionic alterations. Circ Res 72:112–125.

    Article  PubMed  CAS  Google Scholar 

  3. Liu G, Thornton J, Van Winkle D, Stanley A, Olsson R, Downey J. 1991. Protection against infarction afforded by preconditioning is mediated by Al adenosine receptors in rabbit heart. Circ Res 84:350–356.

    Article  CAS  Google Scholar 

  4. Bolli T, Black RJ, Kodani E, Tang X, Yang Z, Bhattacharya S, Auchampach J. 2001. A(1) or A(3) adenosine receptors induce late preconditioning against infarction in conscious rabbits by different mechanisms. Circ Res 88:520–528.

    Article  PubMed  Google Scholar 

  5. Goto M, Liu Y, Yang X, Ardell J, Cohen M, Downey J. 1995. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res 77:611–621.

    Article  PubMed  CAS  Google Scholar 

  6. Thornton J, Liu G, Downey J. 1993. Pretreatment with pertussis toxin blocks the protective effects of preconditioning: evidence for a G-protein mechanism. J Mol Cell Cardiol 25:311–320.

    Article  PubMed  CAS  Google Scholar 

  7. Schultz J, Hau A, Barbieri J, Li P, Gross G. 1998. Pertussis toxin abolishes the cardioprotective effect of ischemic preconditioning in intact rat heart. Am J Physiol 275:H495–H500.

    PubMed  CAS  Google Scholar 

  8. Ytrehus K, Liu Y, Downey J. 1994. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol 266:H1145–H1152.

    PubMed  CAS  Google Scholar 

  9. Speechly-Dick M, Mocanu M, Yellon D. 1994. Protein kinase C: its role in ischemic preconditioning in the rat. Circ Res 75:586–590.

    Article  PubMed  CAS  Google Scholar 

  10. Chen W, Wetsel W, Steenbergen C, Murphy E. 1996. Effect of ischemic preconditioning and PKC activation on acidification during ischemia in rat heart. J Mol Cell Cardiol 28:871–880.

    Article  PubMed  CAS  Google Scholar 

  11. Ping P, Zhang J, Qui Y, Tang X, Manchikalapudi S, Cao X, Bolli R. 1997. Ischemic preconditioning induces selective translocation of protein kinase C isoforms ε and η in the heart of conscious rabbits without subcellular redistribution of total protein kinase C activity. Circ Res 81:404–414.

    Article  PubMed  CAS  Google Scholar 

  12. Dorn G, Souroujon M, Liron T, Chen C, Gray M, Zhou H, Csukai M, Wu G, Lorenz J, Mochly-Rosen D. 1999. Sustained in vivo cardiac protection by a rationally designed peptide that causes epsilon protein kinase C translocation. Proc Natl Acad Sci 96:12798–12803.

    Article  PubMed  CAS  Google Scholar 

  13. Pass J, Zheng Y, Wead W, Zhang J, Li R, Bolli R, Ping P. 2001. PKCepsilon activation induces dichotomous cardiac phenotypes and modulates PKCepsilon-FACK interaction and RACK expression. Am J Physiol 280:H946–H955.

    CAS  Google Scholar 

  14. Cross H, Murphy E, Bolli R, Ping P, Steenbergen C. 2000. Expression of activated PKC-epsilon protects the ischemic heart, without attenuating ischemic H+ production. J Mol Cell Cardiol.

    Google Scholar 

  15. Auchampach J, Grover G, Gross G. 1992. Blockade of ischemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovas Res 26:1054–1062.

    Article  CAS  Google Scholar 

  16. Liu Y, Sato T, O’Rourke B, Marban E. 1998. Mitochondrial ATP dependent potassium channels: novel effectors of cardioprotection? Circulation 97:2463–2469.

    Article  PubMed  CAS  Google Scholar 

  17. Garlid K, Paucek P, Yarv-Yarovoy V, Murray H, Darbenzio R, D’alonzo A, Lodge N, Smith M, Grover G. 1997. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: possible mechanism of cardioprotection. Circ Res 81:1072–1082.

    Article  PubMed  CAS  Google Scholar 

  18. Forbes R, Steenbergen C, Murphy E. 2001. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809.

    Article  PubMed  CAS  Google Scholar 

  19. Murphy E, Glasgow W, Fralix T, Steenbergen C. 1995. Role of lipoxygenase metabolites in ischemic preconditioning. Circ Res 76:457–467.

    Article  PubMed  CAS  Google Scholar 

  20. Chen W, Glasgow W, Murphy E, Steenbergen C. 1999. Lipoxygenase metabolism of arachidonic acid in ischemic preconditioning and PKC-induced protection in heart. Am J Physiol 276:H2094–H2101.

    PubMed  CAS  Google Scholar 

  21. Starkopf J, Andreasen T, Bugge E, Ytrehus K. 1998. Lipid peroxidation, arachidonic acid and products of the lipoxygenase pathway in ischemic preconditioning of rat heart. Cardiovasc Res 37:66–75.

    Article  PubMed  CAS  Google Scholar 

  22. Gabel S, London R, Funk C, Steenbergen C, Murphy E. 2001. Leukocyte-type 12-lipoxygenase-deficient mice show impaired ischemic preconditioning-induced cardioprotection. Am J Physiol 280:H1963–H1969.

    CAS  Google Scholar 

  23. Wu W, Lee W, Wu Y, Chen D, Liu T, Jang A, Sharma P, Wang P. 2000. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem 275:40113–40119.

    Article  PubMed  CAS  Google Scholar 

  24. Matsui T, Li L, del Monte F, Fakui Y, Franke T, Hajjar R, Rosenzeig A. 1999. Adenovirus gene transfer of activated phosphatidyhnositol-3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 100:2373–2379.

    Article  PubMed  CAS  Google Scholar 

  25. Yamashita K, Kajstura J, Discher D, Wasserlauf B, Bishopric N, Anversa P, Webster K. 2001. Re-perfusion-activated Akt kinase prevents apoptosis in transgenic mouse hearts overexpressing insulin-like growth factor. Circ Res 88:609–614.

    Article  PubMed  CAS  Google Scholar 

  26. Rameh L, Cantley L. 1999. The role of phosphoinositide-3-kinase lipid products in cell function. J Biol Chem 274:8347–8350.

    Article  PubMed  CAS  Google Scholar 

  27. Murry C, Richard VJ, Reimer K, Jennings R. 1990. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res 66:913–931.

    Article  PubMed  CAS  Google Scholar 

  28. Weiss R, de Albuquerque C, Vandegaer K, Chacko V, Gerstenblith G. 1996. Attenuated glycogenol-ysis reduces glycolytic catabolite accumulation during ischemia in preconditioned hearts. Circ Res 79:435–446.

    Article  PubMed  CAS  Google Scholar 

  29. Tong H, Chen W, Steenbergen C, Murphy E. 2000. Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res 87:309–315.

    Article  PubMed  CAS  Google Scholar 

  30. Alessi D, Cohen P. 1998. Mechanism of activation and function of protein kinase B. Curr Opin Genet Dev 8:55–62.

    Article  PubMed  CAS  Google Scholar 

  31. Harada H, Anderson J, Mann M, Terada N, Korsmeyer S. 2001. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci 98:9666–9670.

    Article  PubMed  CAS  Google Scholar 

  32. Ping P, Takano H, Zhang J, Tang X, Qui Y, Li R, Banerjee S, Dawn B, Balafonova Z, Bolli R. 1999. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits: a signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 84:587–604.

    Article  PubMed  CAS  Google Scholar 

  33. Takano H, Tang X, Qui Y, Guo Y, French B, Bolli R. 1998. Nitric oxide donors induce late preconditioning against myocardial stunning and infarction in conscious rabbits via an antioxidant-sensitive mechanism. Circ Res 83:73–84.

    Article  PubMed  CAS  Google Scholar 

  34. Woolfson R, Patel V, Neild G, Yellon D. 1995. Inhibition of nitric oxide synthesis reduces infarct size by an adenosine dependent mechanism. Circulation 91:1545–1551.

    Article  PubMed  CAS  Google Scholar 

  35. Weselcouch E, Baird A, Sleph P, Grover G. 1995. Inhibition of nitric oxide synthesis does not affect ischemic preconditioning in isolated perfused rat heart. Am J Physiol 268:H242–H249.

    PubMed  CAS  Google Scholar 

  36. Wei G, Zweier J. 2001. Endothelial nitric oxide synthase is essential for acute ischemic preconditioning. FASEB J 15:A465.

    Google Scholar 

  37. Tong H, Imahashi K, Steenbergen C, Murphy E. 2002. Phosphorylation of glycogen synthase kinase 3 β during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res 90:in press.

    Google Scholar 

  38. Aikawa R, Nawana M, Gu Y, Katagiri H, Asano T, Zhu W, Nagaki R, Komuro I. 2000. Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of Pi3 kinase/Akt. Circulation 102:2873–2979.

    Article  PubMed  CAS  Google Scholar 

  39. Jonassen A, Sacks M, Mjos O, Yellon D. 2001. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 89:1191–1198.

    Article  PubMed  CAS  Google Scholar 

  40. Mehrhof F, Muller F, Bergmann M, Li P, Wang Y, Schmitz W, Dietz R, Harsdorf R. 2001. In car-diomyocyte hypoxia, insulin-like growth factor-I-induced antiapoptotic signaling requires phosphatidylinositol-3-OH-kinase-dependent adn mitogen-activated protein kinase-dependent activation of the transcription factor cAMP response element-binding protein. Circulation 104:2088–2094.

    Article  PubMed  CAS  Google Scholar 

  41. Negoro S, Oh H, Tone E, Kunisada K, Fujio Y, Walsh K, Kishimoto T, Yamauchi-Takihara K. 2001. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol-3-kinase/Akt phosphorylation and Bcl-xL/caspase 3 interaction. Circulation 103:555–561.

    Article  PubMed  CAS  Google Scholar 

  42. Zhu W, Zheng M, Koch W, Lefkowitz R, Kobilka B, Xiao R. 2001. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci 98:1607–1612.

    Article  PubMed  CAS  Google Scholar 

  43. Chesley A, Lundberg M, Asai T, Xiao R, Ohtani S, Lakatta E, Crow M. 2000. The beta(2)-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through G(i)-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 87:1172–1179.

    Article  PubMed  CAS  Google Scholar 

  44. Guerra S, Leri A, Wang X, Finato N, Di Loreto C, Beltrami C, Kajstura J, Anversa P. 1999. Myocyte death in the failing human heart is gender dependent. Circ Res 85:856–866.

    Article  PubMed  CAS  Google Scholar 

  45. Kirkwood F, Sueta C, Gheorghiade M, O’Connor C, Schwartz T, Koch G, Uretsky B, Swedberg K, McKenna W, Soler-Soler J, Califf R. 1999. Gender differences in survival in advanced heart failure, insights from the FIRST study. Circulation 99:1816–1821.

    Article  Google Scholar 

  46. Camper-Kirby D, Welch S, Walker A, Shiraishi I, Setchell K, Schafer E, Katjstura J, Anversa P, Sussman M. 2001. Myocardial Akt activation and gender: increased nuclear activity in females versus males. Circ Res 88:1020–1027.

    Article  PubMed  CAS  Google Scholar 

  47. Naga Prasad S, Esposito G, Mao L, Koch W, Rochman H. 2000. Gbetagamma-dependent phos-phoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem 275:4693–4698.

    Article  PubMed  CAS  Google Scholar 

  48. Morisco C. 2000. The Akt-glycogen synthase kinase 3beta pathway regulates the transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation. J Biol Chem 275: 14466–14475.

    Article  PubMed  CAS  Google Scholar 

  49. Haq S. 2000. Glycogen synthase kinase 3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151:117–130.

    Article  PubMed  CAS  Google Scholar 

  50. Harding V, Jones L, Lefkowitz R, Koch W, Rockman H. 2001. Cardiac β APJCl inhibition prolongs survival and augments β blocker therapy in a mouse model of severe heart failure. Proc Natl Acad Sci 98:5809–5814.

    Article  PubMed  CAS  Google Scholar 

  51. Antos C, McKinsey T, Frey N, Kutschke W, McAnally J, Shelton J, Pichardson J, Hill J, Olsen E. 2002. Activated glycogen synthase-3 β supresses cardiac hypertrophy in vivo. Proc Natl Acad Sci.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Murphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murphy, E., Tong, H., Steenbergen, C. (2003). A Role for the Phosphatidylinositol-3-Kinase Pathway in Preconditioning. In: Dhalla, N.S., Takeda, N., Singh, M., Lukas, A. (eds) Myocardial Ischemia and Preconditioning. Progress in Experimental Cardiology, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0355-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0355-2_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5036-1

  • Online ISBN: 978-1-4615-0355-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics