Skip to main content

Expression of Sodium-Calcium Exchanger Genes in Heart and Skeletal Muscle Development. Evidence for a Role of Adjacent Cells in Regulation of Transcription and Splicing

  • Chapter
Signal Transduction and Cardiac Hypertrophy

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

  • 134 Accesses

Summary

Sodium-calcium exchangers (NCX) are universal plasmalemma proteins regulating intracellular calcium concentration in animal tissues. While gene structure and regulation of the cardiac-specific isoform NCX1 are known in considerable detail, no data are available on the effect of extrinsic and/or extrinsic factors that govern tissue-specific transcription of all three isoforms (NCX1-NCX3) as well as their still hypothetical alternative splicing. We studied NCX gene expression in cardiac and skeletal muscles and in brain during rat development, as well as their expression in muscle cells grown in presence of neuron-conditioned medium. Our data demonstrate that NCX1 and NCX3 expression in cardiac and skeletal muscle is coordinately regulated and is sensitive to as yet unidentified factors apparently produced by the neighboring cells. Correct splicing of NCX3 transcript is rapidly disrupted within minutes of tissue dissection, consequently most of the previously reported splicing variants featuring exon skipping appear to be artefactual.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaustein MP, Lederer WJ. 1999. Sodium/calcium exchange: Its physiological implications. Physiol Rev 79:763–854.

    PubMed  CAS  Google Scholar 

  2. Sanches-Armass S, Blaustein MP 1987. Role of Na/Ca exchange in regulation of intracellular Ca2+ in nerve terminals. Am J Physiol 252:C595-C603.

    Google Scholar 

  3. Lytton J, Lee SL, Lee WS, Van Baal J, Bindeis RJM, Kilav R. 1996. The kidney sodium-calcium exchanger. Ann NY Acad Sei 779:58–72.

    Article  CAS  Google Scholar 

  4. Philipson DK, Nicoll DA. 2000. Sodium-calcium exchange: A molecular perspective. Annu Rev Physiol 62:111–133.

    Article  PubMed  CAS  Google Scholar 

  5. Kraev A, Chumakov I, Carafoli E. 1996. The organization of human gene NCX1 encoding the sodium-calcium exchanger. Genomics 37:105–112.

    Article  PubMed  CAS  Google Scholar 

  6. Scheller T, Kraev A, Skinner S, Carafoli E. 1998. Cloning of the multipartite promoter of the sodium-calcium exchanger gene NCX1 and characterization of its activity in vascular smooth muscle cells. J Biol Chem 273:7643–7649.

    Article  PubMed  CAS  Google Scholar 

  7. Boerth SR, Zimmer DB, Artman M. 1994. Steady-state mRNA levels of the sarcolemmal Na+-Ca2+ exchanger peak near birth in developing rabbit and rat hearts. Circ Res 74:354–359.

    Article  PubMed  CAS  Google Scholar 

  8. Vetter R, Studer R, Reinecke H, Kolar F, Ostadalova I, Drexler H. 1995. Reciprocal changes in the postnatal expresssion of the sarcolemmal Na+-Ca2+ exchanger and SERCA2 in rat heart. J Mol Cell Cardiol 27:1689–1701.

    Article  PubMed  CAS  Google Scholar 

  9. Cheng G, Hagen TP, Dawson ML, Barnes KV, Menick DR. 1999. The role of GATA, CArG, E-box, and a novel element in the regulation of cardiac expression of the Na+-Ca2+ exchanger gene. J Biol Chem 274:12819–12826.

    Article  PubMed  CAS  Google Scholar 

  10. Nicholas SB, Yang W, Lee SL, Zhu H, Philipson KD, Lytton J. 1998. Alternative promoters and cardiac muscle cell-specific expression of the Na+/Ca2+ exchanger gene. Am J Physiol 274:H217-H232.

    PubMed  CAS  Google Scholar 

  11. Muller JG, Isomatsu Y, Koushik SV, O’Quinn M, Xu L, Kappler CS, Hapke E, Zile MR, Conway SJ, Menick DR. 2002. Cardiac-specific expression and hypertrophic upregulation of the feline Na+-Ca2+ exchanger gene H1-promoter in a transgenic mouse model. Circ Res 90:158–164.

    Article  PubMed  CAS  Google Scholar 

  12. Nicoll DA, Otoha M, Lu L, Lu Y, Philipson KD. 1999. A new topological model of the cardiac sarcolemmal Na+-Ca2+ exchanger. J Biol Chem 274:910–917.

    Article  PubMed  CAS  Google Scholar 

  13. Matsuoka S, Nicoll DA, Railly RF, Hilgemann DW, Philipson KD. 1993. Initial localization of regulatory regions of the cardiac sarcolemmal Na+-Ca2+ exchanger. Proc Nad Acad Sei USA 90:3870–3874.

    Article  CAS  Google Scholar 

  14. Levitsky DO, Nicoll DA, Philipson KD. 1994. Identification of the high affinity Ca2+-binding domain of the cardiac Na+-Ca2+ exchanger. J Biol Chem 269:22847–22852.

    PubMed  CAS  Google Scholar 

  15. Levitsky DO, Fraysse B, Léoty C, Nicoll DA, Philipson KD. 1996. Cooperative interaction between Ca2+ binding sites in the hydrophilic loop of the Na+-Ca2+ exchanger. Mol Cell Biochem 160/161:27–32.

    Article  PubMed  Google Scholar 

  16. Matsuoka S, Nicoll DA, Hryshko LV, Levitsky DO, Weiss JN, Philipson KD. 1995. Regulation of the cardiac Na+-Ca2+ exchanger by Ca2+. J Gen Physiol 105:403–420.

    Article  PubMed  CAS  Google Scholar 

  17. Fraysse B, Rouaud T, Millour M, Fontaine-Pérus J, Gardahaut M-F, Levitsky DO. 2001. Expression of the Na+/Ca2+ exchanger in skeletal muscle. Am J Physiol 280:C146-C154.

    CAS  Google Scholar 

  18. Kofuji P, Lederer WJ, Schulze DH. 1994. Mutually exclusive and cassette exons underlie alternatively spliced isoforms of the Na/Ca exchanger. J Biol Chem 269:5145–5149.

    PubMed  CAS  Google Scholar 

  19. Quednau BD, Nicoll DA, Philipson KD. 1997. Tissue specificity and alternative sphcing of the Na+/Ca2+ exchanger isoforms NCX1, NCX2, and NCX3 in rat. Am J Physiol 272:C1250–C1261.

    PubMed  CAS  Google Scholar 

  20. Dyck C, Omelchenko A, Ehas CL, Quednau BD, Philipson KD, Hnatowich M, Hryshko LV 1999. Ionic regulatory properties of brain and kidney splice variants of the NCX1 Na+-Ca2+ exchanger. J Gen Physiol 114:701–711.

    Article  PubMed  CAS  Google Scholar 

  21. Li Z, Matsuoka S, Hryshko LV, Nicoll DA, Bersohn MM, Burke EP, Lifton RP, Phihpson KD. 1994. Cloning of the NCX2 isoform of the plasma membrane Na+-Ca2+ exchanger. J Biol Chem 269:17434–17439.

    PubMed  CAS  Google Scholar 

  22. Nicoll DA, Quednau BD, Qui Z, Xia YR, Lusis AJ, Philipson KD. 1996. Cloning of a third mammalian Na+-Ca2+ exchanger, NCX3. J Biol Chem 271:24914–24921.

    Article  PubMed  CAS  Google Scholar 

  23. Link B, Qui Z, He Z, Tong Q, Hilgemann DW, Philipson DK. 1998. Functional comparison of the three isoforms of the Na+/Ca2+ exchanger (NCX1, NCX2, NCX3). Am J Physiol 274:C415-C423.

    Google Scholar 

  24. Mauro A. 1961. Satellite cells of skeletal muscle. J Biophys Biochem Cytol 9:493–495.

    Article  PubMed  CAS  Google Scholar 

  25. Campion DR. 1984. The muscle satellite cell; a review. Int Rev Cytol 87:225–251.

    Article  PubMed  CAS  Google Scholar 

  26. Jones, 1982. In vitro comparison of embryonic myoblasts and myogenic cells isolated from regenerating rat skeletal muscle. Exp Cell Res 139:401–403.

    Article  PubMed  CAS  Google Scholar 

  27. Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC, Pawson T. 2001. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32:1041–1056.

    Article  PubMed  CAS  Google Scholar 

  28. Creuzet S, Lescaudron L, Li Z, Fontaine-Pérus J. 1998. MyoD, myogenin, and desmin-nls-lacZ transgene emphasize the distinct patterns of satellite cell activation in growth and regeneration. Exp Cell Res 243:241–253.

    Article  PubMed  CAS  Google Scholar 

  29. Aubé AC, Barraud P, Fontaine-Pérus J, Lescaudron L. 1999. In vitro effects of neurons on satellite cell proliferation and differentiation: An in situ hybridization and immunocytochemical investigation. J Muscle Res Cell Motil 20:840.

    Google Scholar 

  30. Lefeuvre B, Crossin F, Fontaine-Perus J, Bandman E, Gardahaut MF. 1996. Innervation regulates myosin heavy chain isoform expression in developing skeletal muscle fibers. Mech Dev 58:115–127.

    Article  PubMed  CAS  Google Scholar 

  31. Barnes KV, Cheng G, Dawson MM, Menick DR. 1997. Cloning of cardiac, kidney, and brain promoters of the feline ncxl gene. J Biol Chem 272:11510–11517.

    Article  PubMed  CAS  Google Scholar 

  32. Carafoh E, Genazzani A, Guerini D. 1999. Calcium controls the transcription of its own transporters and channels in developing neurons. Biochem Biophys Res Commun 266:624–632.

    Article  Google Scholar 

  33. Li L, Guerini D, Carafoh E. 2000. Calcineurin controls the transcription of Na+/Ca2+ exchanger isoforms in developing cerebellar neurons. J Biol Chem 275:20903–20910.

    Article  PubMed  CAS  Google Scholar 

  34. Helgren ME, Squinto SP, Davis HL, Parry DJ, Boulton TG, Heck CS, Zhu Y, Yancopoulos GD, Lindsay RM, DiStefano PS. 1994. Trophic effect of ciliary neurotrophic factor on denervated skeletal muscle. Cell 76:493–504.

    Article  PubMed  CAS  Google Scholar 

  35. English AW, Schwartz G. 1995. Both basic fibroblast growth factor and ciliary neurotrophic factor promote the retention of polyneuronal innervation of developing skeletal muscle fibers. Dev Biol 169:57–64.

    Article  PubMed  CAS  Google Scholar 

  36. Ohta M, Ohi T, Nishimura M, Itoh N, Hayashi K, Ohta K. 1996. Distribution of and age-related changes in ciliary neurotrophic factor protein in rat tissues. Biochem Mol Biol Int 40:671–678.

    PubMed  CAS  Google Scholar 

  37. Schorr M, Zhou L, Schwechheimer K. 1996. Expression of ciliary neurotrophic factor is maintained in spinal motor neurons of amyotrophic lateral sclerosis. J Neurol Sei 140:117–122.

    Article  CAS  Google Scholar 

  38. Pelletier M, Caquineau C, Aubé AC, Barraud J, Fontaine-Pérus J, Zampieri M, Vallette F, Lescaudron L. 2000. Motor neurons stimulate adult muscle precursor cell behavior in vitro. Society for Neuroscience Abstract 514–511.

    Google Scholar 

  39. Kami K, Morikawa Y, Sekimoto M, Senba E. 2000. Gene expression of receptors for IL-6, LIF, and CNTF in regenerating skeletal muscles. J Histochem Cytochem 48:1203–1213.

    Article  PubMed  CAS  Google Scholar 

  40. Wang MC, Forsberg NE. 2000. Effects of ciliary neurotrophic factor (CNTF) on protein turnover in cultured muscle cells. Cytokine 12:41–48.

    Article  PubMed  CAS  Google Scholar 

  41. Peroulakis ME, Forger NG. 2000. Ciliary neurotrophic factor increases muscle fiber number in the developing levator ani muscle of female rats. Neurosci Lett 296:73–76.

    Article  PubMed  CAS  Google Scholar 

  42. Marques MJ, Neto HS. 1997. Ciliary neurotrophic factor stimulates in vivo myotube formation in mice. Neurosci Lett 234:43–46.

    Article  PubMed  CAS  Google Scholar 

  43. Litingtung Y, Chiang C. 2000. Control of Shh activity and signaling in the neural tube. Dev Dyn 219:143–154.

    Article  PubMed  CAS  Google Scholar 

  44. Dutton R, Yamada T, Turnley A, Bartlett PF, Murphy M. 1999. Regulation of spinal motoneuron differentiation by the combined action of Sonic hedgehog and neurotrophin 3. Clin Exp Pharmacol Physiol 26:746–748.

    Article  PubMed  CAS  Google Scholar 

  45. Nakai K, Sakamoto H. 1994. Construction of a novel database containing aberrant sphcing mutations of mammalian genes. Gene 141:171–177.

    Article  PubMed  CAS  Google Scholar 

  46. Brett D, Pospisil H, Valcarcel H, Reich J, Bork P. 2002. Alternative splicing and genome complexity. Nature Genet 30:29–30.

    Article  PubMed  CAS  Google Scholar 

  47. Mironov AA, Fickett JW, Gelfandt MS. 1999. Frequent alternative sphcing of human genes. Genome Research 9:1288–1293.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri O. Levitsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Millour, M., Lescaudron, L., Kraev, A., Levitsky, D.O. (2003). Expression of Sodium-Calcium Exchanger Genes in Heart and Skeletal Muscle Development. Evidence for a Role of Adjacent Cells in Regulation of Transcription and Splicing. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics