Skip to main content

Stretch-Elicited Autocrine/Paracrine Mechanism in the Heart

  • Chapter
  • 130 Accesses

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

Summary

An autocrine/paracrine mechanism is triggered by stretching the myocardium. This mechanism involves the release of angiotensin II (Ang II), the release/increased formation of endothelin (ET), the activation of the Na+/H+ exchanger (NHE), the increase in intracellular Na+ concentration ([Na+]i), and the increase in the Ca2+ transient that underlies the so called slow force response (SFR) to stretch. This autocrine/paracrine mechanism could explain how a change in afterload alters cardiac contractility as was reported by Anrep in 1912.

Established Investigators of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lakatta EG. 1992. Length modulation of muscle performance. Frank-Starling law of the heart. In: Fozzard HA, ed. The Heart and Cardiovascular System, 2nd ed. New York, NY: Raven; 1325–1351.

    Google Scholar 

  2. Allen DG, Nichols CG, Smith GL. 1988. The effects of changes in muscle length during diastole on the calcium transient in ferret ventricular muscle. J Physiol (Lond) 406:359–370.

    PubMed  CAS  Google Scholar 

  3. Parmley WW, Chuck L. 1973. Length-dependent changes in myocardial contractile store. Am J Physiol 224:1195–1199.

    PubMed  CAS  Google Scholar 

  4. Kentish JC, Wrzosek A. 1998. Changes in force and cytosolic Ca2+ concentration after length changes in isolated rat ventricular trabeculae. J Physiol (Lond) 506:431–444.

    Article  PubMed  CAS  Google Scholar 

  5. Alvarez BV, Pérez NG, Ennis IL, Camilión de Hurtado MC, Cingolani HE. 1999. Mechanisms underlying the increase in force and Ca2+ transient that follow stretch of cardiac muscle. A possible explanation of the Anrep Effect. Circ Res 85:716–722.

    Article  PubMed  CAS  Google Scholar 

  6. Camilión de Hurtado MC, Alvarez BV, Pérez NG, Ennis IL, Cingolani HE. 1998. Angiotensin II Activates Na+-independent CL--HCO3 - Exchange in Ventricular Myocardium. Circ Res 82:473–481.

    Article  PubMed  Google Scholar 

  7. Camilión de Hurtado MC, Alvarez BV, Ennis IL, Cingolani HE. 2000. Stimulation of Myocardial Na+-independent CL-HCO3 - Exchanger by Angiotensin II is Mediated by Endogenous Endothelin. Circ Res 86:622–627.

    Article  Google Scholar 

  8. Cingolani HE, Alvarez BV, Ennis IL, Camilión de Hurtado MC. 1998. Stretch-Induced Alkalinization of Feline Papillary Muscle. An autocrine-Paracrine System. Circ Res 83:775–780.

    Article  PubMed  CAS  Google Scholar 

  9. Sadoshima J, Xu Y, Sieker HS, Izumo S. 1993. Autocrine release of angiotensin II mediates stretchinduced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984.

    Article  PubMed  CAS  Google Scholar 

  10. Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Kioke A, Nogami A, Marumo F, Hiroe M. 1993. Endothelin-1 is an autocrine-paracrine factor in the mechanism of angiotensin II-induced hypertrophy in cultured rat cardiomyocytes. J Clin Invest 92:398–403.

    Article  PubMed  CAS  Google Scholar 

  11. Rajagopalan S, Laursen JB, Borthayre A, Kurz S, Keiser J, Haleen S, Glaid A, Harrison DG. 1997. Role for endothelin-1 in Angiotensin II-mediated hypertension. Hypertension 30:29–34.

    Article  PubMed  CAS  Google Scholar 

  12. Ortiz MC, Sanabria E, Manriquez MC, Romero JC, Juncos LA. 2001. Role of endothelin and isoprostanes in slow pressor responses to angiotensin II. Hypertension 37:505–510.

    Article  PubMed  CAS  Google Scholar 

  13. Bluhm WF, Lew WY, Garfinkel A, McCulloch AD. 1998. Mechanism of length history-dependent tension in an ionic model of the cardiac myocyte. Am J Physiol (Heart Circ Physiol) 274:H1032–H1040.

    PubMed  CAS  Google Scholar 

  14. Ballard C, Scharfer S. 1996. Stimulation of the Na+/Ca2+ exchanger by phenylephrine, angiotensin II and endothelin 1. J Mol Cell Cardiol 28:11–17.

    Article  PubMed  CAS  Google Scholar 

  15. Pérez NG, Camilión de Hurtado MC, Cingolani HE. 2001. Reverse mode of the Na+/Ca2+ exchange following myocardial stretch. Underlying mechanism of the slow force response. Circ Res 88: 376–382.

    Article  PubMed  Google Scholar 

  16. von Anrep G. 1912. On the part played by the suprarenals in the normal vascular reactions on the body. J Physiol (Lond) 45:307–317.

    Google Scholar 

  17. Yamazaki T, Komuro I, Kudoh S, Zou Y, Shiojima I, Hiroi Y, Mizuno T, Maemura K, Kurihara M, Aikawa R, Takano H, Yazaki Y. 1996. Endothelin-1 is involved in mechanical stress-induced car-diomyocyte hypertrophy. J Biol Chem 271:3221–3228.

    Article  PubMed  CAS  Google Scholar 

  18. Komuro I, Yazaki Y. 1993. Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55:55–75.

    Article  PubMed  CAS  Google Scholar 

  19. Chien KR, Grace AA, Hunter JJ. 1998. Molecular biology of cardiac hypertrophy and heart failure. In: Molecular Basis of Cardiovascular Disease. Ed, KR Chien. Philadelphia, Pa: WB Saunders Co.

    Google Scholar 

  20. Marbán E, Koretsune Y. 1990. Cell calcium, oncogenes, and hypertrophy. Hypertension 15:652–658.

    Article  PubMed  Google Scholar 

  21. Zou Y, Hiroi Y, Uozumi H, Takimoto E, Toko H, Zhu W, Kudoh S, Mizukami M, Shimoyama M, Shibasaki F, Nagai R, Yazaki Y, Komuro I. 2001. Calcineurin plays a critical role in the development of pressure overload-induced cardiac hypertrophy. Circulation 104:97–101.

    Article  PubMed  CAS  Google Scholar 

  22. Molkentin JD. 2000. Calcineurin and beyond. Cardiac hypertrophic signaling. Circ Res 87:731–738.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio E. Cingolani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cingolani, H.E., Perez, N.G., de Hurtado, M.C.C. (2003). Stretch-Elicited Autocrine/Paracrine Mechanism in the Heart. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics