Skip to main content

β-Adrenergic Signaling in Chronic Heart Failure—Friend or Foe?

  • Chapter
Signal Transduction and Cardiac Hypertrophy

Part of the book series: Progress in Experimental Cardiology ((PREC,volume 7))

  • 126 Accesses

Summary

In chronic heart failure, a number of compensatory mechanisms are activated in order to maintain circulation and thus supply of the body with blood and oxygen. One important mechanism is the activation of the sympathetic nervous system, resulting in increased β-adrenergic signaling. This leads to both adaptive and pathological processes within the cell, including a desensitization of the β-adrenergic signal transduction cascade, the induction of hypertrophy, apoptosis and necrosis. It is currently a matter of debate whether a desensitization of the β-adrenergic signal transduction cascade is adaptive or maladaptive. In other words, it is not entirely clear whether in heart failure, decreased β-adrenergic signaling due to desensitization of the signaling cascade per se is a cause for cardiac dysfunction. In order to elucidate this issue, this review will focus on the consequences of increased β-adrenergic signaling, investigated by selective overexpression of distinct cascade components in mouse models. Furthermore, the impact of partial and inverse agonism of β-blockers on β-adrenergic signaling in human myocardium in vitro as well as in vivo in the clinical situation in patients with heart failure is highlighted. It is discussed whether the fact that not all β-blockers improve survival in heart failure patients may be due to their respective degree of inverse agonism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith WM. 1985. Epidemiology of congestive heart failure. Am J Cardiol 55:3–8A.

    Article  Google Scholar 

  2. Cohn JN, Levine TB, Olivari MT, Gerberg V, Lura D, Francis GS, Simon AB, Rector T. 1984. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311:819–823.

    Article  PubMed  CAS  Google Scholar 

  3. Bristow MR, Ginsburg R, Minobe W, Cubiciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DE, Stinson EB. 1982. Decreased catecholamine sensitivity and β-adrenergic receptor density in failing human hearts. N Engl J Med 307:205–211.

    Article  PubMed  CAS  Google Scholar 

  4. Bristow MR, Anderson FL, Port JD, Skerl L, Hershberger RE, Larrabee P, O’Connell JB, Renlund DG, Volkman K, Murray J, et al. 1991. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84:1024–1039.

    Article  PubMed  CAS  Google Scholar 

  5. Ungerer M, Böhm M, Elce JS, Erdmann E, Lohse MJ. 1993. Altered expression of β-adrenergic receptor kinase and β1-adrenergic receptors in the failing human heart. Circulation 87:454–463.

    Article  PubMed  CAS  Google Scholar 

  6. Böhm M, Gierschik P, Jakobs KH, Pieske B, Schnabel P, Ungerer M, Erdmann E. 1990. Increase of G in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265.

    Article  PubMed  Google Scholar 

  7. Gage J, Rutman H, Lucido D, Le Jemtel TH. 1986. Additive effects of Dobutamine and amrinone on myocardial contractility and ventricular performance in patients with severe heart failure. Circulation 74:367–373.

    Article  PubMed  CAS  Google Scholar 

  8. Gilbert EM, Olsen SL, Renlund DG, Bristow MR. 1993. Beta-adrenergic receptor regulation and left ventricular function in idiopathic dilated cardiomyopathy. Am J Cardiol 71:23C–29C.

    Article  PubMed  Google Scholar 

  9. Böhm M, Deutsch HJ, Hartmann D, La Rosée K, Stäblein A. 1997. Improvement of postreceptor events by metoprolol treatment in patients with chronic heart failure. J Am Coll Cardiol 30:992–996.

    Article  PubMed  Google Scholar 

  10. MERIT-HF Investigators. 1999. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353:2001–2007.

    Article  Google Scholar 

  11. Packer M, Bristow MR, Cohn JN, Colucci W, Fowler MB, Gilbert EM, Shusterman NH, for the US Carvedilol Heart Failure Study Group. 1996. The effect of Carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med 334:1349–1355.

    Article  PubMed  CAS  Google Scholar 

  12. Packer M, Coats AJ, Fowler MB, Katus HA, Krum H, Mohacsi P, Rouleau JL,Tendera M, Castaigne A, Roecker EB, Schultz MK, DeMets DL. 2001. Effect of Carvedilol on survival in severe chronic heart failure. N Engl J Med 344:1651–1658.

    Article  PubMed  CAS  Google Scholar 

  13. Bristow MR. 2000. β-Adrenergic receptor blockade in chronic heart failure. Circulation 101:558–569.

    Article  PubMed  CAS  Google Scholar 

  14. Engelhardt S, Hein L, Wiesmann F, Lohse MJ. 1999. Progressive hypertrophy and heart failure in β1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96:7059–7064.

    Article  PubMed  CAS  Google Scholar 

  15. Iwase M, Bishop SP, Uechi M,Vatner DE, Shannon RP, Kudej RK, Wight DC, Wagner TE, Ishikawa Y, Homcy CJ, Vatner SF. 1996. Adverse effects of chronic endogenous sympathetic drive induced by cardiac G overexpression. Circ Res 78:517–524.

    Article  PubMed  CAS  Google Scholar 

  16. Asai K,Yang GP, Geng YJ, Takagi G, Bishop S, Ishikawa Y, Shannon RP, Wagner TE, Vatner DE, Homey CJ, Vatner SE. 1999. β-Adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G mouse. J Clin Invest 104:551–558.

    Article  PubMed  CAS  Google Scholar 

  17. Milano CA, Allen LF, Rockman HA, Dolber PC, McMinn TR, Chien KR, Johnson TD, Bond RA, Lefkowitz RJ. 1994. Enhanced myocardial function in transgenic mice overexpressing the β2-adrenergic receptor. Science 264:582–586.

    Article  PubMed  CAS  Google Scholar 

  18. Dorn GW 2nd,Tepe NM, Lorenz JN, Koch WJ, Liggett SB. 1999. Low- and high-level transgenic expression of β2-adrenergic receptors differentially affect cardiac hypertrophy and function in Gαq-overexpressing mice. Proc Natl Acad Sci USA 96:6400–6405.

    Article  PubMed  CAS  Google Scholar 

  19. Rockman HA, Chien KR, Choi DJ, Iaccarino G, Hunter JJ, Ross J Jr, Lefkowitz RJ, Koch WJ. 1998. Expression of a β-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. Proc Natl Acad Sci USA 95:7000–7005.

    Article  PubMed  CAS  Google Scholar 

  20. Du XJ, Gao XM, Jennings GL, Dart AM, Woodcock EA. 2000. Preserved ventricular contractility in infarcted mouse heart overexpressing β2-adrenergic receptors. Am J Physiol 279:H2456-H2463.

    CAS  Google Scholar 

  21. Du XJ, Autelitano DJ, Dilley RJ, Wang B, Dart AM, Woodcock EA. 2000. β2-adrenergic receptor overexpression exacerbates development of heart failure after aortic stenosis. Circulation 101:71–77.

    Article  PubMed  Google Scholar 

  22. Liggett SB, Tepe NM, Lorenz JN, Canning AM, Jantz TD, Mitarai S, Yatani A, Dorn GW 2nd. 2000. Early and delayed consequences of β2-adrenergic receptor overexpression in mouse hearts: critical role for expression level. Circulation 101:1707–1714.

    Article  PubMed  CAS  Google Scholar 

  23. Xiao RP, Hohl C, Altschuld R, Jones L, Livingston B, Ziman B, Tantini B, Lakatta EG. 1994. β2-Adrenergic receptor-stimulated increase in cAMP in rat heart cells is not coupled to changes in Ca2+ dynamics, contractility, or phospholamban phosphorylation. J Biol Chem 269:19151–19156.

    PubMed  Google Scholar 

  24. Xiao RP, Ji X, Lakatta EG. 1995. Functional coupling of the β2-adrenoceptor to a pertussis toxin-sensitive G protein in cardiac myocytes. Mol Pharmacol 47:322–329.

    PubMed  CAS  Google Scholar 

  25. Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA, Eschenhagen T, Lefkowitz RJ, Koch WJ, Lakatta EG. 1999. Coupling of β2-adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 84:43–52.

    Article  PubMed  CAS  Google Scholar 

  26. Kilts JD, Gerhardt MA, Richardson MD, Sreeram G, Mackensen GB, Grocott HP, White WD, Davis RD, Newman MF, Reves JG, Schwinn DA, Kwatra MM. 2000. β2-adrenergic and several other G protein-coupled receptors in human atrial membranes activate both Gs and G2i. Circ Res 87:705–709.

    Article  PubMed  Google Scholar 

  27. Mann DL, Kent RL, Parsons B, Cooper G 4th. 1992. Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation 85:790–804.

    Article  PubMed  CAS  Google Scholar 

  28. Communal C, Singh K, Pimentel DR, Colucci WS. 1998. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the β-adrenergic pathway. Circulation 98:1329–1334.

    Article  PubMed  CAS  Google Scholar 

  29. Communal C, Singh K, Sawyer DB, Colucci WS. 1999. Opposing effects of β1- and β2-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G-protein. Circulation 100:2210–2212.

    Article  PubMed  CAS  Google Scholar 

  30. Chesley A, Lundberg MS, Asai T, Xiao RP, Ohtani S, Lakatta EG, Crow MT. 2000. The β-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-dependent coupling to phosphatidylinositol 3’-kinase. Circ Res 87:1172–1179.

    Article  PubMed  CAS  Google Scholar 

  31. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP. 2001. Dual modulation of cell survival and cell death by β2-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 98:1607–1612.

    Article  PubMed  CAS  Google Scholar 

  32. Daaka Y, Luttrell LM, Lefkowitz RJ. 1997. Switching of the coupling of the β2-adrenergic receptor to different G proteins by protein kinase A. Nature 390:88–91.

    Article  PubMed  CAS  Google Scholar 

  33. Narula J, Haider N,Virmani R, Di ST, Kolodgie FD, Hajjar RJ, Schmidt U, Semigran MJ, Dec GW, Khaw BA. 1996. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335:1182–1189.

    Article  PubMed  CAS  Google Scholar 

  34. Olivetti G, Abbi R, Quaini F, Kajstura J, Cheng W, Nitahara JA, Quaini E, Di LC, Beltrami CA, Krajewski S, Reed JC, Anversa P. 1997. Apoptosis in the failing human heart. N Engl J Med 336:1131–1141.

    Article  PubMed  CAS  Google Scholar 

  35. CIBIS II Investigators. 1999. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353:9–13.

    Article  Google Scholar 

  36. The Beta-Blocker Evaluation of Survival Trial Investigators. 2001. A trial of the beta-blocker bucindolol in patients with advanced chronic heart failure. N Engl J Med 344:1659–1667.

    Article  Google Scholar 

  37. De Lean A, Stadel JM, Lefkowitz RJ. 1980. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem. 255: 7108–7117.

    PubMed  Google Scholar 

  38. Bond RA, Leff P, Johnson TD, Milano CA, Rockman HA, McMinn TR, Apparsundaram S, Hyek MF, Kenakin TP, Allen LF. 1995. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 374:272–276.

    Article  PubMed  CAS  Google Scholar 

  39. Benovic JL, Staniszewski C, Mayor FJ, Caron MG, Lefkowitz RJ. 1988. β-Adrenergic receptor kinase. Activity of partial agonists for stimulation of adenylate cyclase correlates with ability to promote receptor phosphorylation. J Biol Chem 263:3893–3897.

    PubMed  Google Scholar 

  40. Samana P, Bond RA, Rockman HA, Milano CA, Lefkowitz RJ. 1997. Ligand-induced overexpression of a constitutively active β2-adrenergic receptor: pharmacological creation of a phenotype in transgenic mice. Proc Natl Acad Sci USA 94:137–141.

    Article  Google Scholar 

  41. Maack C, Flesch M, Südkamp M, Böhm M. 2000. Different intrinsic activities of bucindolol, carvedilol and metoprolol in human ventricular myocardium. Br J Pharmacol 130:1131–1139.

    Article  PubMed  CAS  Google Scholar 

  42. Bond RA, Leff P, Johnson TD, Milano CA, Rockman HA, McMinn TR, Apparsundaram S, Hyek MF, Kenakin TP, Allen LF. 1995. Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the β2-adrenoceptor. Nature 374:272–276.

    Article  PubMed  CAS  Google Scholar 

  43. Nicholas G, Oakley C, Pouleur H, Rousseau MF, Rydéen LE, Wellens H for The Xamoterol In Heart Failure Study Group. 1990. Xamoterol in severe heart failure. Lancet 336:1–6.

    Article  Google Scholar 

  44. Tuininga YS, Crijns HJ, Brouwer J, van den Berg MP, Man in’t Veld AJ, Mulder G, Lie KI. 1995. Evaluation of importance of central effects of atenolol and metoprolol measured by heart rate variability during mental performance tasks, physical exercise, and daily life in stable postinfarct patients. Circulation 92:3412–3415.

    Article  Google Scholar 

  45. Bristow MR, Roden RL, Lowes BD, Gilbert EM, Eichhorn EJ. 1998. The role of third-generation β-blocking agents in chronic heart failure. Clin Cardiol 21:13–113.

    Article  Google Scholar 

  46. Gillman MW, Kannel WB, Belanger A, D’Agostino RB. 1993. Influence of heart rate on mortality among persons with hypertension: the Framingham Study. Am Heart J 125:1145–1148.

    Article  Google Scholar 

  47. Wilhelmsen L, Berglund G, Elmfeldt D, Tibblin G, Wedel H, Pennert K,Vedin A, Wilhelmsson C, Werko L. 1986. The multifactor primary prevention trial in Goteborg, Sweden. Eur Heart J 7:278–279.

    Google Scholar 

  48. Kjekshus JK. 1986. Importance of heart rate in determining β-blocker efficacy in acute and long-term acute myocardial infarction intervention trials. Am J Cardiol 57:43F-49F.

    Article  PubMed  CAS  Google Scholar 

  49. Kjekshus J, Gullestad L. 1999. Heart rate as a therapeutic target in heart failure. Eur Heart J 1(Suppl. H), H64-H69.

    Google Scholar 

  50. White HD, Norris JM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. 1987. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76:44–51.

    Article  PubMed  CAS  Google Scholar 

  51. Hash TW, Prisant LM. 1997. β-Blocker use in systolic heart failure and dilated cardiomyopathy. J Clin Pharmacol 37:7–19.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Maack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maack, C., Böhm, M. (2003). β-Adrenergic Signaling in Chronic Heart Failure—Friend or Foe?. In: Dhalla, N.S., Hryshko, L.V., Kardami, E., Singal, P.K. (eds) Signal Transduction and Cardiac Hypertrophy. Progress in Experimental Cardiology, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0347-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0347-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5032-3

  • Online ISBN: 978-1-4615-0347-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics