Advertisement

Role of AT1 Receptor Blockade in Reperfused Myocardial Infarction

  • Bodh I. Jugdutt
Part of the Progress in Experimental Cardiology book series (PREC, volume 7)

Summary

Angiotensin II (Angll) type 1 (AT1) receptor blockade is an attractive therapeutic strategy for blocking the effects of Angll mediated through the AT1 receptor after ischemia-reperfusion (IR) or reperfused myocardial infarction (MI). Cumulative evidence indicates that blocking the effects of excessive Angll might produce benefits beyond those of lowering of blood pressure. Although early coronary artery reperfusion is becoming established for the initial management of patients with acute MI, it results in reperfusion injury, with myocardial stunning and persistent left ventricular (LV) dysfunction. Since Angll is released during IR and MI, and exerts several effects that enhance IR injury, AT1 receptor blockade might be beneficial as adjunctive therapy after IR and reperfused MI. Recent studies suggest that the Angll type 2 (AT2) receptor and downstream signaling via PKCε (protein kinase Cε) and nitric oxide (NO) might contribute to the cardioprotection induced by AT1 receptor blockade during IR.

Key words

Angiotensin receptors ischemia-reperfusion ventricular function apoptosis angiotensin receptor antagonists 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jugdutt BI. 2001. New advances in the use of AT1 receptor blockers (ARBs). In Proceedings, 2 nd International Congress on heart Disease: New Trends in Research, Diagnosis and Treatment. Ed. A. Kimchi Medimond, 531–538. New Jersey: Medical Publishers.Google Scholar
  2. 2.
    Brunner HR. 2001. Experimental and clinical evidence that angiotensin II is an independent risk factor for cardiovascular disease. Am J Cardiol 87:3C–9C.PubMedCrossRefGoogle Scholar
  3. 3.
    Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. 2000. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342:145–153.PubMedCrossRefGoogle Scholar
  4. 4.
    Dahlöf B, Devereux RB, Kjeldsen SE, for the LIFE study group. 2002. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomized trial against atenolol. Lancet 359:995–1003.PubMedCrossRefGoogle Scholar
  5. 5.
    Ryan TJ, Antman EM, Brooks NH, et al. 1999. Update: ACC/AHA guidelines for the management of patients with acute myocardial infarction. A report of the American College of Cardiology/ American Heart Association Task Force on Practice Guidelines (Committee on Management of Acute Myocardial Infarction). J Am Coll Cardiol 34:890–911.PubMedCrossRefGoogle Scholar
  6. 6.
    Kleiman NS, White HD, Ohman EM, Ross AM, Woodlief LH, Califf RM, Holmes DR Jr, Bates E, Pfisterer M, Vahanian A,Topol EJ, for the GUSTO Investigators. 1994. Mortality within 24 hours of thrombolysis for myocardial infarction. The importance of early reperfusion. The GUSTO Investigators, Global Utilization of Streptokinase and Tissue Plasminogen Activator for Occluded Coronary Arteries. Circulation 90:2658–2665.PubMedCrossRefGoogle Scholar
  7. 7.
    Braunwald E, Kloner RA. 1982. The stunned myocardium: prolonged, post-ischemic ventricular dysfunction. Circulation 66:1146–1149.PubMedCrossRefGoogle Scholar
  8. 8.
    Kloner RA, Jennings RB. 2001. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications. Part 1. Circulation 104:2981–2989.PubMedCrossRefGoogle Scholar
  9. 9.
    Kloner RA, Jennings RB. 2001. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications. Part 2. Circulation 104:3158–3167.PubMedCrossRefGoogle Scholar
  10. 10.
    Przyklenk K, Kloner RA. 1986. Superoxide dismutase plus catalase improve contractile function in the canine model of the “stunned myocardium.” Circ Res 58:148–156.PubMedCrossRefGoogle Scholar
  11. 11.
    Bolli R, Jeroudi MO, Patel BS, et al. 1989. Marked reduction of free radical generation and contractile dysfuncrtion by antioxidant therapy begun at the time of reperfusion: evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res 65:607–622.PubMedCrossRefGoogle Scholar
  12. 12.
    Bolli R. 1990. Mechanisms of myocardial “stunning.” Circulation 82:723–738.PubMedCrossRefGoogle Scholar
  13. 13.
    Fleetwood G, Boutinet S, Meier M, Wood JM. 1991. Involvement of the renin-angiotensin system in ischemic damage and reperfusion arrhythmias in the isolated perfused rat heart. J Cardiovasc Pharmacol 17:351–356.PubMedCrossRefGoogle Scholar
  14. 14.
    Zughaib ME, Sun JZ, Bolli R. 1993. Effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury: an overview. Basic Res Cardiol 88:155–167.PubMedGoogle Scholar
  15. 15.
    Youhua Z, Shouchun X. 1995. Increased vulnerability of hypertrophied myocardium to ischemia and reperfusion injury. Relation to cardiac renin-angiotensin system. Chin Med J 108:28–32.Google Scholar
  16. 16.
    Sun Y, Weber KT. 1994. Angiotensin II receptor binding following myocardial infarction in the rat. Cardiovasc Res 28:1623–1628.PubMedCrossRefGoogle Scholar
  17. 17.
    Francis GS, McDonald KM, Cohn JN. 1993 Neurohumoral activation in preclinical heart failure. Remodeling and the potential for intervention. Circulation 87(5 Suppl):IV90–96.PubMedGoogle Scholar
  18. 18.
    Dostal DE, Baker KN. 1999. The cardiac-renin-angiotensin system. Conceptual or a regulator of cardiac function? Circ Res 85:643–650.PubMedCrossRefGoogle Scholar
  19. 19.
    Haywood GA, Gullestad L, Katsuya T, Hutchinson HG, Pratt RE, Horiuchi M, Fowler MB. 1997. AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 95:1201–1206.PubMedCrossRefGoogle Scholar
  20. 20.
    Matsubara H. 1998. Pathophysiological role of angiotensin II type 2 receptor in cardiovascular and renal diseases. Circ Res 83:1182–1191.PubMedCrossRefGoogle Scholar
  21. 21.
    Horiuchi M, Akishita M, DzauVJ. 1999. Recent progress in angiotensin type 2 receptor research in the cardiovascular system. Hypertension 33:613–621.PubMedCrossRefGoogle Scholar
  22. 22.
    Shanmugam S, Corvol P, Gase J-M. 1996. Angiotensin II type 2 receptor mRNA expression in the developing cardiopulmonary system of the rat. Hypertension 28:91–97.PubMedCrossRefGoogle Scholar
  23. 23.
    Xu Y, Clanachan AS, Jugdutt BI. 2000. Enhanced expression of AT2R, IP3R and PKCε during cardioprotection induced by AT2R blockade. Hypertension 36:506–510.PubMedCrossRefGoogle Scholar
  24. 24.
    Xu Y, Menon V, Jugdutt BI. 2000. Cardioprotection after angiotensin II type 1 blockade involves angiotensin II type 2 receptor expression and activation of protein kinase C-ε in acutely reperfused myocardial infarction. Effect of UP269-6 and losartan on AT1 and AT2 receptor expression, and IP3 receptor and PKCε proteins. J Renin-Angiotensin Aldosterone System 1:184–195.CrossRefGoogle Scholar
  25. 25.
    Jugdutt BI, Xu Y, Balghith M, Moudgil R, Menon V. 2000. Cardioprotection induced by AT1R blockade after reperfused myocardial infarction: Association with regional increase in AT2R, IP3R and PKCε proteins and cGMP. J Cardiovasc Pharmacol & Therapeut 5:301–311.CrossRefGoogle Scholar
  26. 26.
    Moudgil R, Xu Y, Menon V, Jugdutt BI. 2001. Effect of chronic pretreatment with AT1 receptor antagonism on postischemic functional recovery and AT1/AT2 receptor proteins in isolated working rat hearts. J Cardiovasc Pharmacol & Therapeut 6:183–188.CrossRefGoogle Scholar
  27. 27.
    Jugdutt BI, Xu Y, Balghith M, Menon V. 2001. Cardioprotective effects of angiotensin II type 1 receptor blockade with candesartan after reperfused myocardial infarction: Role of angiotensin II type 2 receptor. J Renin-Angiotensin Aldosterone System 2:S162–S166.CrossRefGoogle Scholar
  28. 28.
    Jugdutt BI, Balghith M. 2001. Enhanced regional AT2 receptor and PKCε expression during cardioprotection induced by AT1 receptor blockade after reperfused myocardial infarction. J Renin-Angiotensin Aldosterone System 2:134–140.Google Scholar
  29. 29.
    Moudgil R, Menon V, Xu Y, Musat-Marcu S, Jugdutt BI. 2001. Postischemic apoptosis and functional recovery after angiotensin II type 1 receptor blockade in isolated working rat hearts. J of Hypertension 19:1121–1129.CrossRefGoogle Scholar
  30. 30.
    Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M. 1995. Regulation and gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95:46–54.PubMedCrossRefGoogle Scholar
  31. 31.
    Wiemer G, Schölkens BA, Wagner A, Heitsch H, Linz W. 1993. The possible role of angiotensin II subtype AT2 receptors in endothelial cells and isolated ischemic rat hearts. J Hypertens 11:S234–S235.CrossRefGoogle Scholar
  32. 32.
    Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA. 1997. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure: role of kinins and angiotensin type 2 receptors. J Clin Invest 99:1926–1935.PubMedCrossRefGoogle Scholar
  33. 33.
    Jalowy A, Schulz R, Dorge H, Behrends M, Heush G. 1998. Infarct size reduction by AT1 receptor blockade through a signal cascade of AT2 receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 32:1787–1796.PubMedCrossRefGoogle Scholar
  34. 34.
    Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Lorell BH. 1999. Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation 99:22–25.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshiyama M, Kim S, Yamagishi H, Omura T, Tani T, Takagi M, Toda I, Teragaki M, Akioka K, Takeuchi K, Takeda T. 1994. The deleterious effects of exogenous angiotensin I and angiotensin II on myocardial ischemia-reperfusion injury. Jpn Circ 58:362–368.CrossRefGoogle Scholar
  36. 36.
    Yoshiyama M, Kim S, Yamagishi H, Omura T, Tani T, Yanagi S, Toda I, Teragaki M, Akioka K, Takeuchi K, Takeda T 1994. Cardioprotective effect of the angiotensin II type 1 receptor antagonist TCV-116 on ischemia-reperfusion injury. Am Heart J 128:1–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Werrmann JG, Cohen SM. 1994. Comparison of the effects of angiotensin converting enzyme inhibition with those of angiotensin II receptor antagonism on functional and metabolic recovery in the post-ischemic working rat heart as studied by 31P nuclear magnetic resonance. J Cardiovasc Pharmacol 24:573–586.PubMedCrossRefGoogle Scholar
  38. 38.
    werrmann JG, Cohen SM. 1996. Use of losartan to examine the role of the cardiac renin-angiotensin system in myocardial dysfunction during ischemia and reperfusion. J Cardiovasc Pharmacol 27:177–182.PubMedCrossRefGoogle Scholar
  39. 39.
    Yang BC, Phillips MI, Ambeuhl PEJ, Shen LP, Mehta P, Mehta JL. 1997. Increase in angiotensin II type 1 receptor expression immediately after ischemia-reperfusion in isolated rat hearts. Circulation 96:922–926.PubMedCrossRefGoogle Scholar
  40. 40.
    Ford WR, Khan MI, Jugdutt BI. 1998. Effect of the novel angiotensin II type 1 receptor antagonist L-158,809 on acute infarct expansion and acute anterior myocardial infarction in the dog. Can J Cardiol 14:73–80.PubMedGoogle Scholar
  41. 41.
    Becker LC, Jeremy RW, Schaper J, Schaper W. 1999. Ultrastructural assessment of myocardial necrosis occurring during ischemia and 3-h reperfusion in the dog. Am J Physiol 277:H243-H252.PubMedGoogle Scholar
  42. 42.
    Dörge H, Behrends M, Schulz R, Jalowy A, Heusch G. 1999. Attenuation of myocardial stunning by the ATi receptor antagonist candesartan. Basic Res Cardiol 94:208–214.PubMedCrossRefGoogle Scholar
  43. 43.
    FordWR, Clanachan AS, Jugdutt BI. 1996. Opposite effects of angiotensin receptor antagonists on recovery of mechanical function after ischemia-reperfusion in isolated working rat hearts. Circulation 94:3087–3089.PubMedCrossRefGoogle Scholar
  44. 44.
    Ford WR, Clanachan AS, Lopaschuk GD, Schulz R, Jugdutt BI. 1998. Intrinsic Angll type 1 receptor stimulation contributes to recovery of postischemic mechanical function. Am J Physiol 274:H1524-H1531.PubMedGoogle Scholar
  45. 45.
    O’Brien D, Xu Y, Jugdutt BI. 2000. Efficacy of angiotensin type 1 receptor blockade in the dog model of ventricular remodeling and heart failure. J Cardiovasc Pharmacol Therapeut 5:129–137.CrossRefGoogle Scholar
  46. 46.
    Xu Y, Dyck J, Ford WR, Clanachan AS, Lopaschuk GD, Jugdutt BI. 2002. Angiotensin II type 1 and type 2 receptor protein after acute ischemia-reperfusion in isolated working rat hearts. Am J Physiol Heart Circ Physiol 282:H1206-H1215.PubMedGoogle Scholar
  47. 47.
    Yang BC, Phillips MI, Zhang YC, Kimura B, Shen LP, Mehta P, Mehta JL. 1998. Critical role of ATi receptor expression after ischemia/reperfusion in isolated rat hearts: beneficial effect of antisense oligodeoxynucleotides directed at AT1 receptor mRNA. Circ Res 83:552–559.PubMedCrossRefGoogle Scholar
  48. 48.
    Liu Y-H, Yang X-P, Sharov VG, Sigmon DH, Sabbah HN, Carretero OA. 1996. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats. Hypertension 27:7–13.PubMedCrossRefGoogle Scholar
  49. 49.
    Sladek T, Sladkova J, Kolar F, Papousek F, Cicutti N, Korecky B, Rakusan K. 1996. The effect of AT1 receptor antagonist on chronic cardiac response to coronary artery ligation in rats. Cardiovasc Res 31:568–576.PubMedGoogle Scholar
  50. 50.
    Stauss HM, Zhu Y-C, Redlich T, Adamiak D, Mott A, Kregel KC, Unger T. 1994. Angiotensin-converting enzyme inhibition in infarct-induced heart failure in rats: bradykinin versus angiotensin II. J Cardiovasc Risk 1:255–262.PubMedGoogle Scholar
  51. 51.
    Milavetz JJ, Raya TE, Johnson CS, Morkin E, Goldman S. 1996. Survival after myocardial infarction in rats: Captopril versus losartan. J Am Coll Cardiol 27:714–719.PubMedCrossRefGoogle Scholar
  52. 52.
    Richer C, Fornes P, Cazaubon C, Domergue V, Nisata D, Giudicelli JF. 1999. Effects of long-term angiotensin II AT1 receptor blockade on survival, hemodynamics and cardiac remodeling in chronic heart failure in rats. Cardiovasc Res 41:100–108.PubMedCrossRefGoogle Scholar
  53. 53.
    Bastien NR, Juneau A-V, Ouellette J, Lambert C. 1999. Chronic AT1 receptor blockade and angiotensin-converting enzyme (ACE) inhibition in (CHF 146) cardiomyopathic hamsters: effects on cardiac hypertrophy and survival. Cardiovasc Res 43:77–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Hartman JC, Hullinger TG, Wall TM, Shebuski RJ. 1993. Reduction of myocardial infarct size by ramiprilat is independent of angiotensin II synthesis inhibition. Eur J Pharmacol 234:229–236.PubMedCrossRefGoogle Scholar
  55. 55.
    Liu Y, Tsuchida A, Cohen MV, Downey JM. 1995. Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol 27: 883–892.PubMedCrossRefGoogle Scholar
  56. 56.
    Diaz RJ, Wilson GJ. 1997. Selective blockade of AT1 angiotensin II receptors abolishes ischemic preconditioning in isolated rabbit hearts. J Moll Cell Cardiol 29:129–139.CrossRefGoogle Scholar
  57. 57.
    Richard V, Ghaleh B, Berdeaux A, Giudicelli J-F. 1993. Comparison of the effects of EXP3174, an angiotensin II antagonist, and enalaprilat on myocardial infarct size in anesthetized dogs. Br J Pharmacol 110:969–974.PubMedCrossRefGoogle Scholar
  58. 58.
    McDonald KM, Garr M, Carlyle PF, Francis GS, Hauer K, Hunter DW, Parish T, Stillman A, Cohn JN. 1994. Relative effects of α1-adrenoreceptor blockade, converting enzyme inhibitor therapy, and angiotensin II subtype 1 receptor blockade on ventricular remodeling in the dog. Circulation 90:3034–3046.PubMedCrossRefGoogle Scholar
  59. 59.
    Schwarz ER, Montino H, Fleischhauer J, Klues HG, vom Dahl J, Hanrath P. 1997. Angiotensin II receptor antagonist EXP3174 reduces infarct size comparable with enalaprilat and augments preconditioning in the pig heart. Cardiovasc Drugs Ther 11:687–695.PubMedCrossRefGoogle Scholar
  60. 60.
    Spinale FG, Mukherjee R, Iannini JP, Whitebread S, Hebbar L, Clair MJ, Melton DM, Cox MH, Thomas PB, de Gasparo M. 1997. Modulation of the renin-angiotensin pathway through enzyme inhibition and specific receptor blockade in pacing-induced heart failure: II. Effects on myocyte contractile processes. Circulation 96:2397–2406.PubMedCrossRefGoogle Scholar
  61. 61.
    Pitt B, Segal R, Martinez FA, et al., on behalf of the ELITE Study Investigators: 1997. Randomized trial of losartan versus Captopril in patients over 65 with heart failure (Evaluation of Losartan in Elderly Study, ELITE). Lancet 349:747–752.PubMedCrossRefGoogle Scholar
  62. 62.
    Pitt B, Poole-Wilson PA, Segal R, Martinez FA, Dickstein K, Camm AJ, Konstam MA, Riegger G, Klinger GH, Neaton J, Sharma D, Thiyagarajan B, on behalf of the ELITE II investigators. 2000. Effect of losartan compared with Captopril on mortality in patients with symptomatic heart failure: randomized trial—the Losartan Heart Failure Survival Study ELITE II. Lance 355:1582–1587.CrossRefGoogle Scholar
  63. 63.
    McKelvie RS,Yusuf S, Pericak D, Avezum A, Burns RJ, Probstfield J,Tsuyuki RT, White M, Rouleau J, Latini R, Maggioni A, Young J, Pogue J. 1999. Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100: 1056–1064.PubMedCrossRefGoogle Scholar
  64. 64.
    Cohn JN, Tognoni G; Valsartan Heart Failure Trial Investigators. 2001. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675.PubMedCrossRefGoogle Scholar
  65. 65.
    Kohya T, Yokoshiki H, Tohse N, et al. 1995. Regression of left ventricular hypertrophy prevents ischemia-induced lethal arrhythmias: Beneficial effect of angiotensin II blockade. Circ Res 76:892–899.PubMedCrossRefGoogle Scholar
  66. 66.
    Thomas GP, Ferrier GR, Howlett SE. 1996. Losartan exerts antiarrhythmic activity independent of angiotensin II receptor blockade in simulated ventricular ischemia and reperfusion. J Pharmacol Exp Ther 278:1090–1097.PubMedGoogle Scholar
  67. 67.
    Vanderheyden PML, Fierens FLP, De Backer JP, Fraeyman N, Vauquelin G. 1999. Distinction between surmountable and insurmountable selective AT1 receptor antagonists by use of CHO-K1 cells expressing human angiotensin II AT1 receptors. Br J Pharmacol 126:1057–1065.PubMedCrossRefGoogle Scholar
  68. 68.
    Jugdutt BI. 2001. Cardioprotection and angiotensin II type 2 receptor upregulation during angiotensin type 1 receptor blockade in dog and rat in vivo models of reperfused myocardial infarction. (Abst). J Renin-Angiotensin-Aldosterone System 2:80.Google Scholar
  69. 69.
    Haunstetter A, Izumo S. 1998. Apoptosis: Basic mechanisms and implications for cardiovascular disease. Circ Res 82:1111–1129.PubMedCrossRefGoogle Scholar
  70. 70.
    Kang PM, Izumo S. 2000. Apoptosis and heart failure. A critical review of the literature. Circ Res 86:1107–1113.PubMedCrossRefGoogle Scholar
  71. 71.
    Fliss H, Gattinger D 1996. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 76:949–956.CrossRefGoogle Scholar
  72. 72.
    Gottlieb RA, Gruol DL, Zhu JY, Engler RL. 1996. Preconditioning in rabbit cardiomyocytes: Role of pH, vacuolar proton ATPase, and apoptosis. J Clin Invest 97:2391–2398.PubMedCrossRefGoogle Scholar
  73. 73.
    Gottlieb RA, Engler RL. 1999. Apoptosis in myocardial ischemia-reperfusion. In, Heart in Stress, Ed. Das DK. Ann NY Acad Science, New York, 874:412–426.Google Scholar
  74. 74.
    Gottlieb RA, Burleson KO, Kloner RA, Babior BM, Engler RL. 1994. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 94:1621–1628.PubMedCrossRefGoogle Scholar
  75. 75.
    Saraste A, Pulkki K, Kallajoki M, Henriksen K, Parvinen M, Voipio-Pulkki LM. 1997. Apoptosis in acute myocardial infarction. Circulation 95:320–323.PubMedCrossRefGoogle Scholar
  76. 76.
    Bardales RH, Hailey LS, Xie SS, Schafer RF, Hsu SM. 1996. In situ apoptosis assay for the detection of early acute myocardial infarction. Am J Pathol 149:821–829.PubMedGoogle Scholar
  77. 77.
    Misao J, Hayakawa Y, Ohno M, Kato S, Fujiwara T, Fujiwara H. 1996. Expression of Bcl-2 protein, an inhibitor of apoptosis, and Bax, an accelerator of apoptosis, in ventricular myocytes of human hearts with myocardial infarction. Circulation 94:1505–1512.CrossRefGoogle Scholar
  78. 78.
    Itoh G, et al. 1995. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling method and DNA agarose gel electrophoresis. Am J Pathol 146:1325–1331.PubMedGoogle Scholar
  79. 79.
    Kanoh M, Takemura G, Misao J, et al. 1999. Significance of myocytes with positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated cardiomyopathy: not apoptosis but DNA repair. Circulation 99:2757–2764.PubMedCrossRefGoogle Scholar
  80. 80.
    Ohno M, Takemura G, Ohno A, Misao J, Hayakawa Y, Minatoguchi S, Fujiwara T, Fujiwara H. 1998. “Apoptotic” myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation. Analysis by immunogold electron microscopy combined with in situ nick end-labeling. Circulation 98:1422–1430.PubMedCrossRefGoogle Scholar
  81. 81.
    Katsjura J, Cheng W, Reiss K, Clark WA, Sonnenblick EH, Lrajewski S, et al. 1996. Apoptotic and necrotic myocyte cell deaths are independent variables of infarct size in rats. Lab Invest 74:86–107.Google Scholar
  82. 82.
    Yaoita H, Ogawa K, Maehara K, Maruyama Y. 1998. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 97:276–281.PubMedCrossRefGoogle Scholar
  83. 83.
    Musat-Marcu S, Gunter HE, Jugdutt BI, Docherty JC. 1999. Inhibition of apoptosis after ischemia-reperfusion in rat myocardium by cycloheximide. J Moll Cell Cardiol 31:1073–1082.CrossRefGoogle Scholar
  84. 84.
    Leenen FHH, Skarda V,Yuan B, White R. 1999. Changes in cardiac Angll postmyocardial infarction in rats: effects of nephrotomy and ACE inhibitors. Am J Physiol 276:H317–H325.PubMedGoogle Scholar
  85. 85.
    Kajstura J, Cigola E, Malhotra A, Li P, Cheng W, Meggs LG, Anversa P. 1997. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Moll Cell Cardiol 29:859–870.CrossRefGoogle Scholar
  86. 86.
    Cigola E, Katstura J, Li B, Meggs LG, Anversa P. 1997. Angiotensin II activates programmed myocyte cell death in vitro. Exp Cell Res 231:363–371.PubMedCrossRefGoogle Scholar
  87. 87.
    Leri A, Claudio PP, Li Q, Wang X, Reiss K, Wang S, Malhotra A, Kajstura J, Anversa P. 1998. Stretch-mediated release of angiotensin-II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2-Bax ratio in the cell. J Clin Invest 101:1326–1342.PubMedCrossRefGoogle Scholar
  88. 88.
    Pollman MJ, Yamada T, Horiuchi M, Gibbons GH. 1996. Vasoactive substances regulate vascular smooth muscle cell apoptosis. Countervailing influences of nitric oxide and angiotensin-II. Circ Res 79:748–756.PubMedCrossRefGoogle Scholar
  89. 89.
    deBlois D,Tea BS, Dam T-V Tremblay J, Hamet P. 1997. Smooth muscle apoptosis during vascular regression in spontaneously hypertensive rats. Hypertension 29:340–349.PubMedCrossRefGoogle Scholar
  90. 90.
    Goussev A, Sharov VG, Shimoyama H, Tanimura M, Lesch M, Goldstein S, Sabbah HN. 1998. Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am J Physiol 275:H626–H631.PubMedGoogle Scholar
  91. 91.
    Li Z, Bing OH, Long X, Robinson KG, Lakatta EG. 1997. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 272: H2313–H2319.PubMedGoogle Scholar
  92. 92.
    Masaki H, Kurihara T,Yamaki A, Inomata N, Nozawa Y, Mori Y, Murasawa S, Kizima K, Maruyama K, Horiuchi M, Dzau VJ, Takahashi H, Iwasaka T, Inada M, Matsubara H. 1998. Cardiac-specific overexpression of angiotensin II AT2 receptor causes attenuated response to AT2 receptor-mediated pressor and chronotropic effects. J Clin Invest 101:527–535.PubMedCrossRefGoogle Scholar
  93. 93.
    ZhuYC, ZhuYZ, Gohlke P, Stauss HM, UngerT. 1997. Effects of angiotensin-converting enzyme inhibition and angiotensin II ATI receptor antagonism on cardiac parameters in left ventricular hypertrophy. Am J Cardiol 80:110A–117A.PubMedCrossRefGoogle Scholar
  94. 94.
    Opie LH, Sack MN. 2001. Enhanced angiotensin II activity in heart failure. Reevaluation of the counter-regulatory hypothesis of receptor subtypes. Circ Res 88:654–658.PubMedCrossRefGoogle Scholar
  95. 95.
    Schmieder RE, Erdmann J, Delles C, Jacobi J, Fleck E, Hilgers K, Regitz-Zagrosek V. 2001. Effect of the angiotensin II type 2-receptor gene (+1675G/A) on left ventricular structure in humans. J Am Coll Cardiol 37:175–182.PubMedCrossRefGoogle Scholar
  96. 96.
    Sugino H, Ozono R, Kurisu S, Matsuura H, Ishida M, Oshima T, Kambe M, Teranishi Y, Masaki H, Matsubara H. 2001. Apoptosis is not increased in myocardium overexpressing type 2 angiotensin II receptor in transgenic mice. Hypertension 37:1394–1398.PubMedCrossRefGoogle Scholar
  97. 97.
    Regitz-Zagrosek V, Friedel N, Heymann A, Bauer P, Neuss M, Rolfs A, Steffen C, Hildebrandt A, Hetzer R, Fleck E. 1995. Regulation, chamber localization, and subtype distribution of angiotensin II receptors in human hearts. Circulation 91:1461–1471.PubMedCrossRefGoogle Scholar
  98. 98.
    Biollaz J, Brunner HR, Gavras I, Waeber B, Gavras H. 1982. Antihypertensive therapy with MK 421: angiotensin-renin relationships to evaluate efficacy of converting enzyme blockade. J Cardiovasc Pharmacol 4:966–972.PubMedCrossRefGoogle Scholar
  99. 99.
    Mento PF, Wilkes BM. 1987. Plasma angiotensins and blood pressure during converting enzyme inhibition. Hypertension 9 (Suppl III): III42–III48.PubMedGoogle Scholar
  100. 100.
    Rousseau MF, Konstam MA, Benedict CR, Donckier J, Galanti L, Melin J, Kinan D, Ahn S, Ketelslegers J-M, Pouleur H. 1994. Progression of left ventricular dysfunction secondary to coronary artery disease, sustained neurohormonal activation and effects of ibopamine therapy during long-term therapy wth angiotensin-converting enzyme inhibitor. Am J Cardiol 73:488–493.PubMedCrossRefGoogle Scholar
  101. 101.
    Baruch L, Anand I, Cohen IS, Zeische S, Judd D, Cohn JN, for the vasodilator Heart Failure Trial (V-HeFT) Study Group. 1999. Augmented short- and long-term hemodynamic and hormonal effects of an angiotensin receptor blocker added to angiotensin converting enzyme inhibitor therapy in patienst with heart failure. Circulation 99:2658–2664.PubMedCrossRefGoogle Scholar
  102. 102.
    Goldberg MR, Bradstreet TE, McWilliams EJ, et al. 1995. Biochemical effects of losartan, a non-peptide angiotensin II receptor antagonist, on the renin-angiotensin-aldosterone system in hypertensive patients. Hypertension 25:37–46.PubMedCrossRefGoogle Scholar
  103. 103.
    Urata HB, Healy B, Stewart RW, Bumpus FM, Husain A. 1990. Angiotensin II-forming pathways in normal and failing hearts. Circ Res 66:883–890.PubMedCrossRefGoogle Scholar
  104. 104.
    Seyedi N, Xu XB, Nasjletti A, Hintze TH. 1995. Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26:164–170.PubMedCrossRefGoogle Scholar
  105. 105.
    Tsutsumi Y, Matsubara H, Masaki H, Kurihara H, Murasawa S, Takai S, Miyazaki M, Nozawa Y, Ozono R, Nakagawa K, Miwa T, Kawada N, Mori Y, Shibasaki Y, Tanaka Y, Fujiyama S, Koyama Y, Fujiyama A, Takahashi H, Iwasaka T. 1999. Angiotensin II type 2 receptor overexpression activates the vascular kinin system and causes vasodilation. J Clin Invest 104:925–935.PubMedCrossRefGoogle Scholar
  106. 106.
    Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. 1993. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol 25: 1369–1380.PubMedCrossRefGoogle Scholar
  107. 107.
    Hübner R, Högemann AM, Sunzel M, Riddell JG. 1997. Pharmacokinetics of candesartan after single and repeated doses of candesartan cilexetil in young and elderly human volunteers. J Hum Hypertens 11:S19–S25.PubMedGoogle Scholar
  108. 108.
    Ping P,Takano H, Zhang J, Tang X-L, Qiu Y, Li RCX, Banerjee S, Dawn B, Balafonova Z, Bolli R. 1999. Isoform-selective activation of protein kinase C by nitric oxide in the heart of conscious rabbits. A signaling mechanism for both nitric oxide-induced and ischemia-induced preconditioning. Circ Res 84:587–604.PubMedCrossRefGoogle Scholar
  109. 109.
    Cannon CP, Gibson CM, Lambrew CT, Shoultz DA, Levy D, French WJ, Gore JM, Weaver WD, Rogers WJ, Tiefenbrunn AJ. 2000. Relationship of symptom-onset-to-balloon time and door-to-balloon time with mortality in patients undergoing angioplasty for acute myocardial infarction. JAMA 283:2941–2947.PubMedCrossRefGoogle Scholar
  110. 110.
    Topol EJ. 1996. Early myocardial reperfusion: an assessment of current strategies in acute myocardial infarction. Eur Heart J 17 (Suppl E):42–48.PubMedCrossRefGoogle Scholar
  111. 111.
    Ross AM, Coyne KS, Reiner JS, Greenhouse SW, Fink C, Frey A, Moreyra E,Traboulsi M, Racine N, Riba AL, Thompson MA, Rohrbeck S, Lundergan CF. 1999. A randomized trial comparing primary angioplasty with a strategy of short-acting thrombolysis and immediate planned rescue angioplasty in acute myocardial infarction: the PACT trial. PACT investigators. Plasminogen-activator Angioplasty Compatibility Trial. J Am Coll Cardiol 34:1954–1962.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  1. 1.Division of Cardiology, Department of Medicine, and Cardiovascular Research Group, Faculty of MedicineUniversity of AlbertaEdmontonCanada

Personalised recommendations