Skip to main content

Interpretation of stress echocardiography

Qualitative and emerging quantitative approaches

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 247))

Abstract

The greatest current limitation of stress echocardiography is subjectivity. While some variations in the style and emphasis of performing the two-dimensional echo acquisition require a learning curve for the technician performing the test, the individual interpreting the test also has a great requirement for expertise. The length and difficulty of this process is related to the experience of the echocardiographer, but even with accomplished echocardiographers, experience varies with respect to the duration of this learning period. Picano (1) reported that 100 supervised studies were required to bring the accuracy of “novices” experienced in echocardiography (but not stress echocardiography) to the level of “experts”, whose accuracy did not vary over time (Figure 2.1). Subsequent work by Varga et al (2) has shown that accuracy and concordance between observers can be increased (though perhaps not to optimal levels) by a two-day training course. These studies were performed using dipyridamole stress echocardiography, with interpretations from video tape. Our impression is that the total learning period may be abbreviated using exercise or dobutamine echocardiography, and digital image processing. One other consequence of the subjective approach to image interpretation id that pattern recognition skills attenuate when they are not used and limited data suggest that accuracy is related to reading volume.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Picano E, Lattanzi F, Orlandini A, Marini C, L’Abbate A. Stress echocardiography and the human factor: the importance of being expert. J Am Coll Cardiol 1991;17:666–9.

    Article  PubMed  CAS  Google Scholar 

  2. Varga A, Picano E, Dodi C, Barbieri A, Pratali L, Gaddi O. Madness and method in stress echo reading. Eur Heart J 1999;20:1271–5.

    Article  PubMed  CAS  Google Scholar 

  3. Oberman A, Fan PH, Nanda NC et al. Reproducibility of two-dimensional exercise echocardiography. J Am Coll Cardiol 1989;14:923–8.

    Article  PubMed  CAS  Google Scholar 

  4. Hoffmann R, Lethen H, Marwick T et al. Analysis of interinstitutional observer agreement in interpretation of dobutamine stress echocardiograms. J Am Coll Cardiol 1996;27:330–6.

    Article  PubMed  CAS  Google Scholar 

  5. Hoffmann R, Lethen H, Marwick T et al. Standardized guidelines for the interpretation of dobutamine echocardiography reduce interinstitutional variance in interpretation. Am J Cardiol 1998;82:1520–4.

    Article  PubMed  CAS  Google Scholar 

  6. Hoffmann, R., Poldermans, D., van der Meer, P., and et al. The maturing of stress echocardiography: Improved intercenter agreement in interpretation of dobutamine stress echocardiograms using new techniques. Eur Heart J 2002; 23:821–829.

    Article  PubMed  CAS  Google Scholar 

  7. Broderick T, Sawada S, Armstrong WF, Ryan T, Dillon JC, Bourdillon PDF. Improvement in rest and exercise-induced wall motion abnormalities after coronary angioplasty: an exercise echocardiographic study. J Am Coll Cardiol 1990;15:591–9.

    Article  PubMed  CAS  Google Scholar 

  8. Nishimura RA, Reeder GS, Miller FA, et al. Prognostic value of predischarge 2-dimensional echocardiogram after acute myocardial infarction. Am J Cardiol 1984;53:429–32.

    Article  PubMed  CAS  Google Scholar 

  9. Picano E, Lattanzi F. Dipyridamole-echocardiography test: a new tool for the diagnosis of coronary artery disease. Arquivos Brasileiros de Cardiologia 1990;54:179–87.

    PubMed  CAS  Google Scholar 

  10. Bach DS, Muller DW, Gros BJ, Armstrong WF. False positive dobutamine stress echocardiograms: characterization of clinical, echocardiographic and angiographic findings. J Am Coll Cardiol 1994;24:928–33.

    Article  PubMed  CAS  Google Scholar 

  11. Pandian NG, Skorton DJ, Collins SM, Falsetti HL, Burke ER, Kerber RE. Heterogeneity of left ventricular segmental wall thickening and excursion in 2-dimensional echocardiograms of normal human subjects. Am J Cardiol 1983;51:1667–773.

    Article  PubMed  CAS  Google Scholar 

  12. Pierard LA, De Landsheere CM, Berthe C, Rigo P, Kulbertus HE. Identification of viable myocardium by echocardiography during dobutamine infusion in patients with myocardial infarction after thrombolytic therapy: comparison with positron emission tomography. J Am Coll Cardiol 1990;15:1021–31.

    Article  PubMed  CAS  Google Scholar 

  13. Ginzton LE, Conant R, Brizendine M, Thigpen T, Laks MM. Quantitative analysis of segmental wall motion during maximal upright dynamic exercise: variability in normal adults. Circulation 1986;73:268–75.

    Article  PubMed  CAS  Google Scholar 

  14. Elhendy A, Cornel JH, Roelandt JR, van Domburg RT, Fioretti PM. Akinesis becoming dyskinesis during dobutamine stress echocardiography. A predictor of poor functional recovery after surgical revascularization. Chest 1996;110:155–8.

    Article  PubMed  CAS  Google Scholar 

  15. Carstensen S, Ali SM, Stensgaard-Hansen FV et al. Dobutamine-atropine stress echocardiography in asymptomatic healthy individuals. The relativity of stress-induced hyperkinesia. Circulation 1995;92:3453–63.

    Article  PubMed  CAS  Google Scholar 

  16. Wahi S, Marwick TH. Aortic regurgitation reduces the accuracy of exercise echocardiography for diagnosis of coronary artery disease. J Am Soc Echocardiogr 1999;12:967–73.

    Article  PubMed  CAS  Google Scholar 

  17. Secknus MA, Niedermaier ON, Lauer MS, Marwick TH. Diagnostic and prognostic implications of left ventricular cavity obliteration response to dobutamine echocardiography. Am J Cardiol 1998;81:1318–22.

    Article  PubMed  CAS  Google Scholar 

  18. Smart SC, Knickelbine T, Malik F, Sagar KB. Dobutamine-atropine stress echocardiography for the detection of coronary artery disease in patients with left ventricular hypertrophy. Importance of chamber size and systolic wall stress. Circulation 2000;101:258–63.

    Article  PubMed  CAS  Google Scholar 

  19. Lattanzi F, Picano E, Bolognese L et al Inhibition of dipyridamole-induced ischemia by antianginal therapy in humans. Correlation with exercise electrocardiography. Circulation 1991;83:1256–62.

    Article  PubMed  CAS  Google Scholar 

  20. Stamm RB, Carabello BA, Mayers DL, et al. Two-dimensional echocardiographic measurement of left ventricular ejection fraction: prospective analysis of what constitutes an adequate determination. Am Heart J 1982;104:136–44.

    Article  PubMed  CAS  Google Scholar 

  21. Ginzton LE, Laks MM, Brizendine M, Conant R, Mena I. Noninvasive measurement of the rest and exercise peak systolic pressure/end-systolic volume ratio: a sensitive two-dimensional echocardiographic indicator of left ventricular function. J Am Coll Cardiol 1984;4:509–16.

    Article  PubMed  CAS  Google Scholar 

  22. Armstrong GP, Carlier SG, Fukamachi K, Thomas JD, Marwick TH. Estimation of cardiac reserve by peak power: validation and initial application of a simplified index. Heart 1999;82:357–64.

    PubMed  CAS  Google Scholar 

  23. Koch R, Lang RM, Garcia MJ et al. Objective evaluation of regional left ventricular wall motion during dobutamine stress echocardiographic studies using segmental analysis of color kinesis images. J Am Coll Cardiol 1999;34:409–19.

    Article  PubMed  CAS  Google Scholar 

  24. Bates JR, Ryan T, Rimmerman CR et al. Color coding of digitized echocardiograms: Description of a new technique and application in detecting and correcting for cardiac translation. Journal of the American Society of Echocardiography 1994;7:363–9.

    PubMed  CAS  Google Scholar 

  25. Force TL, Folland ED, Aebisher N, Sharma S, Parisi AF. Echocardiographic assessment of left ventricular function. In: Marcus ML, Schelbert HR, Skorton DJ, Wolf GL, eds. Cardiac imaging. Philadelphia: WB Saunders, 1991.

    Google Scholar 

  26. Bednarz J, Vignon P, Mor-Avi V, V et al. Color Kinesis: Principles of Operation and Technical Guidelines. Echocardiography 1998;15:21–34.

    Article  PubMed  Google Scholar 

  27. Lang RM, Vignon P, Weinert L et al. Echocardiographic quantification of regional left ventricular wall motion with color kinesis. Circulation 1996;93:1877–85.

    Article  PubMed  CAS  Google Scholar 

  28. Mor-Avi V, Vignon P, Koch R et al. Segmental analysis of color kinesis images: new method for quantification of the magnitude and timing of endocardial motion during left ventricular systole and diastole. Circulation 1997;95:2082–97.

    Article  PubMed  CAS  Google Scholar 

  29. Koch R, Lang RM, Garcia MJ et al. Objective evaluation of regional left ventricular wall motion during dobutamine stress echocardiographic studies using segmental analysis of color kinesis images. J Am Coll Cardiol 1999;34:409–19.

    Article  PubMed  CAS  Google Scholar 

  30. Spencer KT, Bednarz J, Mor-Avi V, Decara J, Lang RM. Automated endocardial border detection and evaluation of left ventricular function from contrast-enhanced images using modified acoustic quantification. J Am Soc Echocardiogr 2002;15:777–81.

    Article  PubMed  Google Scholar 

  31. Chan J, Wahi SCP, Marwick TH. Anatomical M-mode: A novel technique for the quantitative evaluation of regional wall motion analysis during stress echocardiography. Int J Card Imaging 2000;16:247–55.

    Article  PubMed  CAS  Google Scholar 

  32. Strotmann JM, Escobar Kvitting JP, Wilkenshoff UM, Wranne B, Hatle L, Sutherland GR. Anatomic M-mode echocardiography: A new approach to assess regional myocardial function--A comparative in vivo and in vitro study of both fundamental and second harmonic imaging modes. J Am Soc Echo 1999;12:300–7.

    Article  CAS  Google Scholar 

  33. Milunski MR, Mohr GA, Wear KA, et al. Early identification with ultrasonic integrated backscatter of viable but stunned myocardium in dogs. J Am Coll Cardiol 1989;14:462–71.

    Article  PubMed  CAS  Google Scholar 

  34. Milunski MR, Mohr GA, Perez JE, et al. Ultrasonic tissue characterization with integrated backscatter: Acute myocardial ischemia, reperfusion, and stunned myocardium in patients. Circulation 1989;80:491–503.

    Article  PubMed  CAS  Google Scholar 

  35. Sutherland GR, Stewart MJ, Groundstroem KW et al. Color Doppler myocardial imaging: a new technique for the assessment of myocardial function. J Am Soc Echo 1994;7:441–58.

    CAS  Google Scholar 

  36. Henein MY, Gibson DG. Long axis function in disease. Heart 1999;81:22931

    Google Scholar 

  37. Bach DS, Armstrong WF, Donovan CL, Muller DW. Quantitative Doppler tissue imaging for assessment of regional myocardial velocities during transient ischemia and reperfusion. Am Heart J 1996;132:721–5.

    Article  PubMed  CAS  Google Scholar 

  38. Katz WE, Gulati VK, Mahler CM, Gorcsan J. Quantitative evaluation of the segmental left ventricular response to dobutamine stress by tissue Doppler echocardiography. Am J Cardiol 1997;79:1036–42.

    Article  PubMed  CAS  Google Scholar 

  39. Wilkenshoff UM, Sovany A, Wigstrom L et al. Regional mean systolic myocardial velocity estimation by real-time color Doppler myocardial imaging: a new technique for quantifying regional systolic function. J Am Soc Echocardiogr 1998;11:682–92.

    Google Scholar 

  40. Pasquet A, Armstrong G, Rimmerman CM, Marwick TH. Correlation of myocardial Doppler velocity response to exercise with independent evidence of myocardial ischemia by dual isotope single photon emission computed tomography. Am J Cardiol 2000;85:536–42.

    Article  PubMed  CAS  Google Scholar 

  41. Cain P, Baglin T, Case C, Spicer D, Short L, Marwick TH. Application of tissue doppler to interpretation of dobutamine echocardiography: comparison with quantitative coronary angiography. Am J Cardiol 2001;87:525–31.

    Article  PubMed  CAS  Google Scholar 

  42. Cain, P., Napier, S., Haluska, B., Short, L., and Marwick, T. H. Influence of left ventricular size and hemodynamics on the systolic longitudinal myocardial Doppler velocity response to stress. Am Heart J 2002;143:169–75.

    Article  PubMed  Google Scholar 

  43. Fathi RB, Cain P, Nakatani S, Yu H, Marwick TH. Effect of tissue Doppler on the accuracy of novice and expert interpreters of dobutamine echocardiography. Am J Cardiol 2001;88:400–5.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Marwick, T.H. (2003). Interpretation of stress echocardiography. In: Stress Echocardiography. Developments in Cardiovascular Medicine, vol 247. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0331-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0331-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5024-8

  • Online ISBN: 978-1-4615-0331-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics