Advertisement

5 Porous matrix composites

  • Bilge Saruhan
Chapter

Abstract

Synthesis of an effective fiber coating may require higher temperatures which partly degrade the fiber. Moreover, full-coverage of fiber surface with a coating layer which serves as an interphase in the composites may be costly and difficult to realize.

Keywords

Residual Stress Energy Release Rate Hybrid Composite Damage Tolerance Matrix Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braue, W., Borath, R., Flucht. F., Goering, J. and Schneider. H., 2001. Failure Analysis of NextelTM 720 Fibers Subjected to High-Temperature Testing: The Role of Intrinsic Fiber Impurities, in “High-Temperature Ceramic Matrix Composites”. eds. W. Krenkel, R. Naslain, H. Schneider, Wiley VCH, Germany, 90–95.Google Scholar
  2. Bunsell, A. R. and Berger, M.-H., 1999, Fine Ceramic Fibers, Marcel Dekker Inc. New York, USA.Google Scholar
  3. Carelli, E. Y., Fujita, H., Yang, J. Y. and Zok, F. W., 2002, Effects of thermal aging on the mechanical properties of a porous-matrix ceramic composite. J. Am. Ceram. Soc., 85(3) 595–602.CrossRefGoogle Scholar
  4. Cinibulk, M. K., Kristin, K. A., Mah, T.-I. and Parthasarathy, A., 2001, Nextel 610 and 650 fiber reinforced porous alumina-YAG matrix composites, Ceram. Eng. Sci. Proc., 22 (3) 677–683.CrossRefGoogle Scholar
  5. Cutler, W. A., Zok, F. W. and Lange, F. F., 1996. Mechanical Behavior of Several Hybrid Ceramic-Matrix-Composite Laminates, J. Am. Ceram. Soc., 79(7) 1825–1833.CrossRefGoogle Scholar
  6. Deléglise, F., Berger, M. H., Jeulin, D. and Bunsel, A. R., 2001, Microstructural stability and Room Temperature Mechanical Properties of the Nextel 720 Fiber, J. Euro. Ceram. Soc., 21, 569–580.CrossRefGoogle Scholar
  7. Göring, J., Flucht, F. and Schneider, H., 2001, Mechanical Behavior of WHIPOX Ceramic Matrix Composites. in “High-Temperature Ceramic Matrix Composites”. eds. W. Krenkel, R. Naslain, H. Schneider. Wiley YCH, Germany. 675–680.Google Scholar
  8. Harrison, M. G., Millard, M. L. and Szweda, A., 1994. Fiber Reinforced Ceramic Matrix Composite Member and Method for Making, U.K. Pat. No.2 230 259, Nov. 17, 1993, U.S. Pat. No. 5 306 554, Apr. 26.Google Scholar
  9. He, M. Y. and Hutchinson, J. W., 1989. Kinking of a Crack out of an Interface, J. Appl. Mech., 56, 270–278.CrossRefGoogle Scholar
  10. Heathcote, J.A., Gong, X.-Y., Yang J.Y., Ramamurty, U. and Zok, F. W., 1999, In-plane mechanical properties of an all-oxide ceramic composite, J. Am. Ceram. Soc., 82 (10) 2721–2730.CrossRefGoogle Scholar
  11. Kanka, B. and Schneider, H., 2000, Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties, J. Euro. Ceram. Soc., 20(5) 619–623.CrossRefGoogle Scholar
  12. Kanka, B., Göring, J., Schmücker, M., and Schneider, H., 200la, Processing, microstructure and properties of NextelTM610, 650 and 720 fiber/porous mullite matrix composites. Ceram. Eng. Sci. Proc., 22(3) 703–710.CrossRefGoogle Scholar
  13. Kanka, B., Schmücker, M., Luxem, W. and Schneider. H., 2001b, Processing and microstructure of WHIPOXTM, in “High-Temperature Ceramic Matrix Composites”, eds. W. Krenkel, R. Naslain, H. Schneider, Wiley VCH, Germany. 610–615.Google Scholar
  14. Kramb, Y.A., John, R. and Zawada, L., 1999, Notched fracture behavior of an oxide/oxide ceramic-matrix composite, J. Am. Ceram. Soc., 82(11) 3087–3096.CrossRefGoogle Scholar
  15. Levi, C. G., Yang, J.Y., Dalgleish, B.J., Zok, F.W. and Evans A.G., 1998, Processing and performance of an all-oxide ceramic composite, J. Am. Ceram. Soc., 81 (8) 2077–2086.CrossRefGoogle Scholar
  16. Milz, C., 2000, Mechanische und Mikrostrukturelle Charakterisierung einer aluminosilikatischen Faser für den Hochtemperatureinsatz in Verbundwerkstoffen, Shaker Verlag, Aachen, Germany (Dissertation)Google Scholar
  17. Radsick, T., Saruhan, B. and Schneider, H. 2000, Damage tolerant oxide/oxide fiber laminate composites, J. Euro. Ceram. Soc., 20, 545–550.CrossRefGoogle Scholar
  18. Schmücker, M., Kanka, B. and Schneider, H., 2000, Temperature-induced fibre/matrix interactions in porous aluminosilicate ceramic matrix composites, J. Euro. Ceram. Soc., 20, 2491–2497.CrossRefGoogle Scholar
  19. Schmücker, M., Kanka, B. and Schneider, H., 2001, Mesostructure of WHIPOXTM all oxide ceramic, in “High-Temperature Ceramic Matrix Composites”, eds. W. Krenkel, R. Naslain, H. Schneider, Wiley VCH, Germany, 670–674.Google Scholar
  20. Schneider, H., Saruhan, B., Voll, D. Merwin, L., Sebald, A., 1993, Mullite Precursor Phases, J. Eur. Ceram. Soc., 11, 87–94.CrossRefGoogle Scholar
  21. Schneider, H., Schmücker, M., Göring, J., Kanka, B., She, J. and Mechnich, P., 2000, Porous aluminosilicate fiber/mullite matrix composites: Fabrication and Properties. in “Innovative Processing/Synthesis: Ceramics, Glasses, Composites IV”, eds. N. P. Bansal et al., Amer. Ceram. Soc., Westervill, OH, USA, 415–434.Google Scholar
  22. Schneider, H., Göring, J., Kank, A. B., Schmücker, M., 2000, WHIPOX: Ein neuer Oxidfaser/Oxidmatrix-Leichtbauwerkstoff für Hochternperaturanwendungen, Keramische Zeitschrift, 53, 788–791.Google Scholar
  23. She, J. H., Mechnich, P., Schneider, H. Kanka, B., Schmücker, M., 2000, Infiltration behaviors of porous mullite/mullite preforms in aluminum-chloride solutions, J. Mater. Sci. Lett., 19, 1887–1891.CrossRefGoogle Scholar
  24. She, J. H., Mechnich, P., Schneider, H. Schmücker, M., Kanka, B., 2002, Effect of cyclic infiltration on microstructure and mechanical behavior of porous mullite/mullite composites, Mater. Sci. And Eng. A325, 19–24.CrossRefGoogle Scholar
  25. Tressler, R. E. and DiCarlo, J. A., 1993, High temperature mechanical properties of advanced ceramic fibers, in “High Temperature Ceramic Matrix Composites (HAT-CMC-1)”, eds. R. Naslain, J. Lamon, and D. Doumeingts, Bordeaux, France, pp.33–49.Google Scholar
  26. Tu, W-C., Lange, F.F. and Evans, A.G., 1996, Concept for a damage-tolerant ceramic composite with “strong” interfaces, J. Am. Ceram. Soc., 79(2) 417–424.CrossRefGoogle Scholar
  27. Wallenberger, F. T., 1999. Advanced Inorganic Fibers: Processes Structures, Properties, Applications. Kluwer Academic Publ., Dordrecht/Boston/London.CrossRefGoogle Scholar
  28. Wilson, D. M., Lueneburg, D.C. and Leider, S. L., 1993, High temperature properties of NextelTM 610 and alumina-based nanocomposite fibers. Ceramic Engineering and science proceedings, Vol. 14, No. 7–8, 609–621.CrossRefGoogle Scholar
  29. Wilson, D. M. and Visser, L. R., 2000. NextelTM 650 Ceramic Oxide Fibers: New Alumina-Based Fiber for High Temperature Composite Reinforcement, Ceram.. Eng. Sci. Proc., 21(4) 363–373.CrossRefGoogle Scholar
  30. Zok, F. W. and Levi, C. G., Mechanical Properties of Porous-Matrix Ceramic Composites, Advanced Engineering Materials, 3, No. 1–2, 15–23, 2001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Bilge Saruhan
    • 1
  1. 1.German Aerospace Center Institute for Materials ResearchCologneGermany

Personalised recommendations