Skip to main content

Abstract

Ceramics are intrinsically brittle. Ceramic composites should be superior to ceramics in terms of fracture behavior, exhibiting damage tolerant failure. Damage tolerance, probably the most important property for a composite, relies on the presence of flaw-free, high-strength fibers, a load transferring dense matrix and a chemically and thermally inert interphase. The latter is certainly to introduce debonding and frictional sliding characteristics, leading to fiber pull-out and consequently to damage tolerance of the composite. That means, by crack bridging, crack blunting and crack deflection mechanisms oxide CMCs tolerate fracture which otherwise, in monolithic ceramics, leads to catastrophic failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Besmann, T. M., Kupp, R. K., Lara-Curzio, E. and More, K. L., 2000. Ceramic Composites with Multilayer Interface Coatings. J. Am. Ceram. Soc., 83 (12) 3014–20.

    Article  CAS  Google Scholar 

  • Bo, L., Liya, S., Xiaozhen, L., Tanmin, W., Ishii. K., Sasaki. Y., Kashiwaya. Y., Takahashi, H., Shibayama, T., 2000, Structure and Morphology Transition of CePO4 Coatings on Alumina Fibers. J. Mater. Sci. Lett. 19, 343–347.

    Article  Google Scholar 

  • Boakye, E., Hay, R. S. and Petry, M. D., 1997, Mixed carbon-aluminum oxide coatings from aqueous sols and solutions. Mat. Res. Soc. Symp. Proc. Vol.: 432, 363–368.

    Article  CAS  Google Scholar 

  • Boakye, E., Hay, R. S. and Petry, M. D., 1999, Continuous Coating of Oxide Fiber Tows Using Liquid Precursors: Monazite Coatings on Nextel 720, J. Am. Ceram. Soc., 82 (9) 2321–31.

    Article  CAS  Google Scholar 

  • Cain, M.G., Cain, R.L., Tye, A., Rian, P. Lewis, M.H. anf Gent, J., 1997, Structure and Stability of Synthetic Interphases in CMCs. in Key Engineering Materials. Trans Tech Publications, Switzerland, Vols.: 127-13, pp. 37–50.

    Google Scholar 

  • Chawla, K. K., 1993. Ceramic Matrix Composites. Chapman & Hall, Cambridge. UK.

    Google Scholar 

  • Chawla, K. K., 2000, Interface engineering inoxide fiber/oxide matrix composites, Int. Mat. Rew., Vol.: 45(5) 165–189.

    Article  CAS  Google Scholar 

  • Cho, J., Harmer, M.P., Chan, H.M., Rickman. J.M. and Thompson, A.M., 1997, Effect of Yttrium and Lanthanum on the Tensile Creep Behavior of Aluminum Oxide. J. Am. Ceram. Soc., 80 (4) 1013–17.

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., 1994. Magnetoplumbite Compounds as a Fiber Coating in Oxide/Oxide Composites. Ceram. Eng. Sci. Proc., 15(5) 721–28.

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., 1995a. Thermal stability of some Hexaluminates at 1400°C. J. Mater. Sci. Lett., 14, 651–54.

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., 1995b, Synthesis and Characterization of Sol-Gel Derived Lanthanum Hexaluminate Powders and Films, J. Mater. Res., Vol. 10 (1) 71–76.

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., 1995c. Microstructure and Mechanical Behavior of an Hibonite Interphase in Alumina-Based Composites. Ceram. Eng. Sci. Proc., 16(5) 633–41.

    Article  Google Scholar 

  • Cinibulk, M.K., and Hay. R.S., 1996, Textured Magnetoplumbite Fiber-Matrix Interphase Derived from Sol-Gel Fiber Coatings. J. Am. Ceram. Soc., 79 (5) 1233–46.

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., 1997. Deposition of Oxide Coatings on Fiber Cloths by Electrostatic Attraction. J. Am. Ceram. Soc., 80 (2) 453–60.

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., Hay. R.S and Dutton, R.E. 1998. Textured calcium hexaluminate fiber-matrix interphase for ceramic-matrix composites. in “Ceramic Microstructures: Control at the atomic level”. eds. A.P. Tomsia and A.M. Glaeser. Plenum Press, New York. USA, pp. 731–739.

    Chapter  Google Scholar 

  • Cinibulk, M.K., 1998, Effect of Precursors and Dopants on the Synthesis and Grain Growth of Calcium Hexaluminate, J. Am. Ceram. Soc., 81 (12) 3157–68.

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., 1999, Effect of Divalent Cations on the Synthesis of Citrate-Gel-Derived Lanthanum Hexaluminate Powders and Films, J. Mater. Res., Vol.: 14, No. 9, 3581–3593

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., 2000a. Hexaluminates as a cleavable fiber-matrix interphase: Synthesis, texture development and phase compatibility. J. Euro. Ceram. Soc., 20 (5) 569–582.

    Article  CAS  Google Scholar 

  • Cinibulk, M.K., Parthasarathy, T. A., Keller, K. A. and Mah, T., 2000b. Porous rare-earth aluminate fiber coatings for oxide-oxide composites, Ceram. Sci. Eng. Proc., 21 (4) 219–228.

    Article  CAS  Google Scholar 

  • Davis J.B., Marshall, D.B., Morgan, P.E.D., 2000. Monazite containing oxide/oxide composites. J. Euro. Ceram. Soc., 20 (5). 583–587.

    Article  CAS  Google Scholar 

  • Goettler, R.W. and Sambasivan, S. and Dravid, V., 1997. Isotropic complex oxides as fiber coatings for oxide-oxide CFCC. Ceram. Eng. Sci. Proc., 18 (3), 279–286.

    Article  CAS  Google Scholar 

  • Hay, R.S., Mah, T. and Cooke, C., 1994. Molybdenum-Palladium Fiber-Matrix Interlayers for Ceramic Composites. Ceram. Eng. Sci. Proc., 15 (5), 760–768.

    Article  CAS  Google Scholar 

  • Hay, R. S., Petry, M.D., Keller, K.A., Cinibulk, M.K. and Welch, J. R., 1995. Carbon and Oxide Coatings on Continuous Ceramic Fibers, Mat. Res. Soc. Symp., Proc., Vol.: 365. 377–82.

    Article  CAS  Google Scholar 

  • Hay, R. S., 1995, The Use of Solid-State Reactions with Volume Loss to Engineer Stress and Porosity into the Fiber-Matrix Interface of a Ceramic Composite, Acta Metall. Mater., 43 (9) 3333–37.

    Article  CAS  Google Scholar 

  • Hay, R. S., 2000. Monazite and Scheelite Deformation Mechanisms. Ceram. Eng. Sci. Proc., 21 (4) 203–217.

    Article  CAS  Google Scholar 

  • Hay, R. S., Boakye, E. and Petry, M.D., 2000. Effect of Coating Deposition Temperature on Monazite Coated Fiber, J. Euro. Ceram. Soc., 20 (5) 589–597.

    Article  CAS  Google Scholar 

  • He M.Y. and Hutchinson, J.W., 1989, Crack deflection at an interface between dissimilar elastic materials, Int. J. Solids Struct., 25 (9) 1053–67

    Article  Google Scholar 

  • Iyi, N., Takekawa, S. and Kimura, S., 1989. Crystal Chemistry of Hexaluminates: β-Alumina and Magnetoplumbite Structures, J. Solid State Chem., 83, 8–19.

    Article  CAS  Google Scholar 

  • Kahn, A., Lejus, A.M., Madsac, M., Théry, J. and Vivien, D., 1981, Preparation, structure, optical, and magnetic properties of lanthanide aluminate single crystals (LnMAl11O19), J. App. Phys., 52 (11) 6864–6869.

    Article  CAS  Google Scholar 

  • Kanka, B. and Schneider, H., 2000. Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties. J. Euro. Ceram. Soc., 20 (5) 619–623.

    Article  CAS  Google Scholar 

  • Keller, K. A., Mah, T.-I., Parthasarathy, T. A. and Cooke, C. M., 1997, Fugitive interfacial carbon coatings for oxide/oxide composites, Ceram. Eng. Sci. Proc. 14 (9–10) 878–879.

    Google Scholar 

  • Keller, K. A., Mah, T.-I., Boakye, E. E. and Parthasarathy, T. A., 2000a, Gel-casting and reaction bonding of oxide-oxide minicomposites with monazite interphase, Ceram. Eng. Sci. Proc., 21(4) 543–548.

    Google Scholar 

  • Keller, K.A., Mah, T-I., Parthasarathy, T. A. and Cooke, C.M., 2000b, Fugitive interfacial carbon coatings for oxide/oxide composites, J. Am. Ceram. Soc., 83 (2) 329–36.

    Article  CAS  Google Scholar 

  • Keller, K.A., Mah, T.-I., Parthasarathy, T.A., Boakye, E. E. and Cinibulk, M. K., 2001, Evaluation of all-oxide composites based on coated Nextel610 and 650 fibers, Ceram. Eng. Sci. Proc., 22 (3) 667–685.

    Article  CAS  Google Scholar 

  • Kerans, R. J., 1994. Issues in the control of fiber-matrix interface properties in ceramic composites, Scr. Metall. Mater., 31 (8) 1079–1084.

    Article  CAS  Google Scholar 

  • Kerans, R. J., 1996. Viability of Oxide Fiber Coatings in Ceramic Composites for Accommodation of Misfit Stresses, J. Am. Ceram. Soc., 79 (6) 1661–68.

    Article  Google Scholar 

  • Kuntz, M., 1996, Rißwiderstand keramischer Faserverbundwerkstoffe, Dissertation, Universität Karlsruhe, Fakultät für Machinenbau, Shaker Verlag, Aachen, Deutschland (PhD-Thesis).

    Google Scholar 

  • Kumagai, M. and Messing, G. L., 1985, Controlled transformation and sintering of a boehmite sol-gel by α-alumina seeding. J. Am. Ceram. Soc. 68 (9) 500–505.

    Article  CAS  Google Scholar 

  • Kuo, D.-H. and Kriven, W.M., 1995, Characterization of Yttrium Phosphate and a Yttrium Phosphate/Yttrium Aluminate Laminate, J. Am. Ceram. Soc., 78 (11) 3121–3124.

    Article  CAS  Google Scholar 

  • Kuo, D.-H. and Kriven, W.M., 1996, Chemical stability, microstructure and mechanical behavior of LaPO4-containing ceramics, Mater. Sci. and Eng., A210, 123–134.

    Article  Google Scholar 

  • Kuo, D.-H., Kriven, W. and Mackin, T.J., 1997, Control of Interfacial Properties through Fiber Coatings: Monazite Coatings in Oxide-Oxide Composites, J. Am. Ceram. Soc., 80 (12) 2987–96.

    Article  CAS  Google Scholar 

  • Lange. F.F., 1992, Proc. Recrystallization, ed. by M. Fuentos and J. Gil Sevillano, Trans. Tech. Publications. Germany/UK/USA), 81–90.

    Google Scholar 

  • Liu, C., Komarneni, S. and Roy, R., 1995, Crystallization and Seeding Effect in BaAl2Si2O8 Gels, J. Am. Ceram. Soc., 78 (9) 2521–26.

    Article  CAS  Google Scholar 

  • Mah, T., Keller, K., Parthasarathy, T.A. and Guth, J., 1991, Fugitive Interface Coating in Oxide-Oxide Composites: A Viability Study, Ceram. Eng. Sci. Proc. 12(9–10) pp. 1802–1815.

    Article  CAS  Google Scholar 

  • Marshall, D.B., Morgan, P.E.D., Housley, R.M. and Cheung, J.T., 1998, High-Temperature Stability of the Al2O3-LaPO4 System. J. Am. Ceram. Soc., 81 (4) 951–56.

    Article  CAS  Google Scholar 

  • Mayer, B. Saruhan, H. Schneider, 1999, Sol-gel coating of Nextel 720-fibers with lanthanhexaluminate, in Key Engineering Materials, Vols.: 164–165, eds. by K. Niihara, K. Nakano, T. Sekino and E. Yasuda, Trans Tech Pub., Switzerland, pp. 53–58.

    Google Scholar 

  • Milz, c., 2000, Mechanische und Mikrostrukturelle Charakterisierung einer aluminosilikatischen Faser für den Hochtemperatureinsatz in Verbundwerkstoffen, Shaker Verlag, Aachen. Deutschland (PhD Thesis)

    Google Scholar 

  • Moran, P.E.D and Marshall, D.B., 1993, Functional Interfaces for Oxide/Oxide Composites, Mater. Sci. Eng. A, A162, 15–25.

    Article  Google Scholar 

  • Morgan. P.E.D. and Miles, J.A., 1986, Magnetoplumbite-Type Compounds: Further Discussion, J. Am. Ceram. Soc., 69 (7) C–157–C–159.

    Article  Google Scholar 

  • Morgan, P.E.D., Marshall, D.B. and Housley, R.M., 1995. High Temperature Stability of Monazite-Alumina Composites. Mater. Sci. Eng., A, A195, 215–22.

    Article  Google Scholar 

  • Naslain, R. R., 1995, The concept of layered interphases in SiC/SiC, in High-Temperature Ceramic-Matrix Composites II. ed. by A.G. Evans and R. Naslain, Ceram. Trans. Vol.: 58, 23–41.

    Google Scholar 

  • Naslain, R. R., 1998, The design of the fiber-matrix interfacial zone in ceramic matrix composites, Composites, 29A, 1145–55.

    CAS  Google Scholar 

  • Nubian, K., Saruhan, B., Kanka, B., Schmücker, M. Schneider, H., Wahl, G., 2000, Chemical vapor deposition of zrO2 and C/ZrO2 on mullite fibers for interfaces in mullite/aluminosilicate fiber-reinforced composites, J. Euro. Ceram. Soc., 20 (5) 537–544.

    Article  CAS  Google Scholar 

  • Ogbuji, L. U. J. T., 1995, A porous oxidation-resistant fiber coating for CMC interphases, Ceram. Eng. Sci. Proc., 16 (4) 497–505.

    Article  CAS  Google Scholar 

  • Parthasarathy, T. A., Balaye, D. R., Jero, P. D. and Kerans, R.J., 1994. Effect of interfacial roughness parameters on the fiber push-out behavior of a model composite. J. Am. Ceram. Soc., 77, 3232–3236.

    Article  CAS  Google Scholar 

  • Parthasarathy, T. A., Kerans, R. J. and Pagano, N. J., 1999a, Effective Fiber Properties to Incorporate Coating Thermoelastic Effects in Fiber/Matrix Composite Models, J. Am. Ceram. Soc., 82(3) 579–84.

    Article  CAS  Google Scholar 

  • Parthasarathy, T. A., Boakye, E. E., Cinibulk, M.K. and Petry, M.D., 1999b, Fabrication and Testing of oxide/oxide microcomposites with monazite and hibonite as interlayers, J. Am. Ceram. Soc., 82 (12) 3575–83.

    Article  CAS  Google Scholar 

  • Parthasarathy, T. A., Boakye, E. E., Keller, K. A. and Hay, R. S., 2001, Evaluation of Porous ZrO2-SiO2 and Monazite Coatings Using NextelTM720-Fiber-Reinforced BlackglassTM Minicomposites, J. Am. Ceram. Soc., 84 (7) 1526–1532.

    Article  CAS  Google Scholar 

  • Ropp, R.C. and Carroll, B., 1980. Solid-state kinetics of LaAl11O18, J. Am. Ceram. Soc., 63 (7–8) 416–419.

    Article  CAS  Google Scholar 

  • Saruhan, B., Mayer, L., Schneider, H., 1999a, Lanthanhexaluminate as interphase material in oxide-fiber-reinforced oxide-matrix composites. in Innovative Processing/Synthesis: Ceramics, Glasses, Composites II, Ceramic Transactions, Vol. 94, ed. by N. P. Bansal and J. P. Singh. The American Ceramic Society. Westerville, OH, USA, pp.215–226.

    Google Scholar 

  • Saruhan, B. Schneider, H., Komameni, S., Abothu, I.R., 1999b, Electrostatically deposited surface seeding and promotion of crystallization of sol-gel derived LaAl11O18 coating on oxide fibers, J. Euro. Ceram. Soc., 19, 2427–2435.

    Article  CAS  Google Scholar 

  • Saruhan, B. Komarneni, S., Abothu, I.R., Loong, C.K., 2000, Crystallization of electrostatically seeded lanthanum hexaluminate films on polycrystalline oxide fibers, J. Am. Ceram. Soc., 83 (12) 3172–78.

    Article  CAS  Google Scholar 

  • Saruhan, B., Schmücker, M., Bartsch, M., Schneider, H., Nubian, K., Wahl, G., 2001a, Effect of Interphase Characteristics on Long-Term Durability of Oxide-Based Fiber-Reinforced Composites, in “Processing of fibers and composites, Composites — Part A Applied Science and Manufacturing, eds. K.K. Chawla, A. Mortensen, J.-A. E. Månson, Vol.: 32A, 1095–1104.

    Google Scholar 

  • Saruhan, B., Bartsch, M., Schmücker, M., Schneider H., Nubian, K., Wahl, G., 2001b, Correlation of high-temperature properties and interphase characteristics in oxide/oxide fiber-reinforced composites. Proc. of Sym on Ceramic and Metal-Matrix Comp., 10th Iketani Conf. on Materials Research. June 26–30, 2000, Karuizawa, Japan, Int. J. Mater. & Prod. Techn., Interscience Ltd., UK, Vol.: 16. No 1–3, pp. 259–68.

    Google Scholar 

  • Saruhan, B., Bartsch, M., Schneider, Nubian, K. Wahl, G., H., Kuntz, M., 2001C, Einfluss der Interface-Eigenschaften auf die Versagenstoleranz von oxidischen Faserverbundwerkstoffen. in “Verbundwerkstoffe und Werkstoffverbunde”, eds. B. Wielage und G. Leonhardt Wiley-VCH. Deutschland. pp. 291–297.

    Google Scholar 

  • Selvaraj, U., Liu, C; Komarneni, S. and Roy, R., 1991, Epitaxial Crystallization of Seeded Albite Glass, J. Am. Ceram. Soc., 74, 1378–81.

    Article  CAS  Google Scholar 

  • Shoup, S. S., Paranthaman, M., Goyal, A., Specht, E. D., Lee, D.F., Kroeger, D.M. and Beach, D. B., 1998, Epitaxial thin film growth of lanthanum and neodymium aluminate on roll-textured nickel using a sol-gel method. J. Am. Ceram. Soc., 81 (11) 3019–3021.

    Article  CAS  Google Scholar 

  • Steffier, W., 1996, Multilayer fiber coating, US Patent No. 5,445,116

    Google Scholar 

  • Tu, W-C., Lange, F. F. and Evans, A.G., 1996, Concept for a damage-tolerant ceramic composite with “strong” interfaces, J. Am. Ceram. Soc., 79 (2) 417–424.

    Article  CAS  Google Scholar 

  • Vaidya, K. J., Yang, C.Y., DeGraef, M. and Lange, F. F. 1994. Heteroepitaxy of Rare-Earth Hexa-Aluminates on Sapphire. J. Mater. Res., Vol. 9 (2), 410–419.

    Article  CAS  Google Scholar 

  • Viana, B., Lejus, A. M., Vivien, D., Poncon, V. and Boulon, G., 1987, Synthesis, ESR investigation, and optical properties of the potential vibronic laser material LaMgAl11−xCrO19, J. Solid State Chem., 71, 77–86.

    Article  CAS  Google Scholar 

  • Wang, X.H., Lejus, A-M. and Vivien, D., 1990. Oxidation behavior of lanthanide aluminum oxynitrides with magnetoplumbite-like structure, J. Am. Ceram. Soc., 73 (3) 770–74.

    Article  CAS  Google Scholar 

  • Wendorff, J., Garcia, D. E., Janssen, R. and Claussen, N. 1994, Sapphire-Fiber Reinforced RBAO, Ceram. Eng. Sci. Proc. 7, 364–370.

    Article  Google Scholar 

  • Yamagushi, O., Sugiura, K., Mitsui, A. and Shimiza, K., 1985, New compound in the system La2O3-Al2O3, J. Am. Ceram. Soc., 68 (2) C-44C-45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saruhan, B. (2003). 4 Tailoring and Control of Interphase. In: Oxide-Based Fiber-Reinforced Ceramic-Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0319-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0319-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7349-6

  • Online ISBN: 978-1-4615-0319-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics