In-Situ Electric Transport of Carbon Nanotubes

  • Z. L. Wang
  • P. Poncharal
  • W. A. de Heer
  • C. Hui


Electrical transport in single-walled nanotubes (SWNTs) and multiwalled nanotubes (MWNTs) is of great importance for their applications in electronics [1]. The electronic band structure of SWNTs is well known: depending on the helicity and statistically in a third of the cases, a tube has two one-dimensional subbands (channels) that intercept the Fermi level, giving rise to metallic conduction. More precisely, only armchair tubes are gapless: all others are often referred to as metallic, although small gaps that are introduced by curvature effects of the order of 10 meV for 1.4 nm diameter SWNTs effect transport at low temperatures. The gap diminishes with increasing tube diameter. Measurements of nanotube conductance mainly use two techniques. Using lithographically made gold electrodes, a carbon nanotube is laid down across two or four electrodes, and the I-V characteristic is measured [2, 3]. The other technique takes the advantage of using liquid mercury as a soft contacting electrode; a nanotube is inserted into the mercury, and the conductance is monitored as a function of the depth that the nanotube is inserted into the mercury [4]. The latter has been carried out in-situ in TEM. This chapter is intended to review the progress in applying the second technique in electrical property characterization of nanotubes. A comprehensive review about all of the existing literature and the comparison of data in electrical characterization can be found from [5].


Carbon Nanotubes Contact Resistance Graphitic Particle Quantum Conductance Mercury Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review, see C. Dekker, Physics Today (May 1999) 22.Google Scholar
  2. 2.
    T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature 382 (1996) 54.CrossRefGoogle Scholar
  3. 3.
    S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386 (1997) 474.CrossRefGoogle Scholar
  4. 4.
    S. Frank, P. Poncharal, Z. L. Wang, and W. A. de Heer, Science 280 (1998) 1744.CrossRefGoogle Scholar
  5. 5.
    P. Poncharal, C. Berger, Yan Yi, Z. L. Wang, and W A. de Heer, J. Phys. Chem. B 106 (2002) 12104.CrossRefGoogle Scholar
  6. 6.
    R. Landauer, Philos. Mag. 21 (1970) 863.CrossRefGoogle Scholar
  7. 7.
    D. S. Fisher and P. A. Lee, Phys, Rev. B 23 (1981) 6851.CrossRefGoogle Scholar
  8. 8.
    L. Chico, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. B 54 (1996) 2600.CrossRefGoogle Scholar
  9. 9.
    M. S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y. G. Yoon, M. S. C. Mazzoni, H. J. Choi, J. Ihm, S. G. Louie, A. Zettl, and P. L. McEuen, Science 288 (2000) 494.CrossRefGoogle Scholar
  10. 10.
    P. J. de Pablo, E. Graugnard, B. Walsh, R. P. Andres, S. Datta, and R. Reifenberger, Appl. Phys. Lett. 74 (1999) 323.CrossRefGoogle Scholar
  11. 11.
    H. J. Choi, J. Ihm, Y G. Yoon, and S. G. Louie, Phys. Rev. B 60 (1999) 14009.CrossRefGoogle Scholar
  12. 12.
    P. Delaney, M. Di Ventra, and S. T. Pantelides, Appl. Phys. Lett. 75 (1999) 3787.CrossRefGoogle Scholar
  13. 13.
    T. W. Tombler, C. W. Zhou, L. Alexseyev, J. Kong, H. J. Dai, L. Lei, C. S. Jayanthi, M. J. Tang, and S. Y Wu, Nature 405 (2000) 769.CrossRefGoogle Scholar
  14. 14.
    P. G. Collins, K. Bradley, M. Ishigami, and A. Zettl, Science 287 (2000) 1801.CrossRefGoogle Scholar
  15. 15.
    C. T. White and T. N. Todorov, Nature 393 (1998) 240.CrossRefGoogle Scholar
  16. 16.
    A. Bachtold, C. Strunk, L. P. Salvetat, J. M. Bonard, L. Forro, T. Nussbaumer, and C. Schonenberger, Nature 397 (1999) 673.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Z. L. Wang
    • 1
  • P. Poncharal
    • 2
  • W. A. de Heer
    • 2
  • C. Hui
    • 3
  1. 1.Georgia Institute of TechnologyAtlantaUSA
  2. 2.Georgia Institute of TechnologyAtlantaUSA
  3. 3.Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations