Electron Energy-Loss Spectroscopy of Carbon Nanotubes and Onions

  • T. Stöckli
Chapter

Abstract

In electron energy-loss spectroscopy (EELS), the kinetic energy of a beam of initially monokinetic electrons after interaction with a sample is analyzed. This can be in transmission geometry, where electrons pass through a sufficiently thin film, or in reflection geometry, combination with a transmission electron microscope (TEM), where one precisely has the transmission geometry described above. This configuration has the advantage that high-resolution spatial information can readily be combined with spectroscopic data. In principle, there are two variations of the technique—either (1) the electron beam where electrons incident at a gracing angle are reflected back into an energy analyzer. Most often, EELS is carried out in is focused to a subnanometer spot that is scanned across the sample while at each point the spectroscopic information is recorded or (2) electrons within given energy windows are used to form a series of energy filtered images of the sample [1].

Keywords

Carbon Nanotubes Core Loss Dielectric Tensor Plasmon Excitation Electron Energy Loss Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.-L. Lavergne, J.-M. Martin, and M. Belin, Microsc. Microanal Microstruct. 3 (1992) 517.CrossRefGoogle Scholar
  2. 2.
    H. Raether, H. Pick, and K. H. Bennemann, Solid State Excitations by Electrons (Berlin: Springer-Verlag, 1965).Google Scholar
  3. 3.
    J. Daniels, C. Festenberg, H. Raether, et al., Optical Constants of Solids by Electron Spectroscopy (Berlin: Springer-Verlag, 1979).Google Scholar
  4. 4.
    H. Raether, Excitation of Plasmons and Interband Transitions by Electrons (Berlin: Springer-Verlag, 1980).Google Scholar
  5. 5.
    P. Schattschneider and B. Jouffrey, in Springer Series in Optical Science (Berlin: Springer-Verlag, 1995).Google Scholar
  6. 6.
    R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope (New York: Plenum Press, 1996).CrossRefGoogle Scholar
  7. 7.
    P. M. Ajayan, S. Iijima, and T. Ichihashi, Phys. Rev. B 47 (1992) 6859.CrossRefGoogle Scholar
  8. 8.
    R. Kuzuo, M. Terauchi, and M. Tanaka, Jpn. J. Appl Phys. Part 2 31 (1992) L1484.CrossRefGoogle Scholar
  9. 9.
    L. A. Bursill, P. A. Stadelmann, J. L. Peng et al., Phys. Rev. B 49 (1994) 2882.CrossRefGoogle Scholar
  10. 10.
    Z. L. Wang, Micron 27 (1996) 265.CrossRefGoogle Scholar
  11. 11.
    A. A. Lucas, L. Henrard, and P. Lambin, Phys. Rev. B 49 (1994) 2888.CrossRefGoogle Scholar
  12. 12.
    T. Stöckli, J.-M. Bonard, A. Châtelain et al., Phys. Rev. B 57 (1998) 15599.CrossRefGoogle Scholar
  13. 13.
    T. Stöckli, Z. L. Wang, J.-M. Bonard et al., Phil. Mag. B 79 (1999) 1531.CrossRefGoogle Scholar
  14. 14.
    M. Kodak, L. Henrard, O. Stephan et al., Phys. Rev. B 61 (2000) 13936.CrossRefGoogle Scholar
  15. 15.
    T. Stöckli, J.-M. Bonard, A. Châtelain et al., Phys. Rev. B 61 (2000) 5751.CrossRefGoogle Scholar
  16. 16.
    M. Kodak, L. Henrard, O. Stephan et al., Phys. Rev. B 61 (2000) 13936.CrossRefGoogle Scholar
  17. 17.
    T. Pichler, M. Knupfer, M. S. Golden et al., Phys. Rev. Lett. 80 (1998) 4729.CrossRefGoogle Scholar
  18. 18.
    T. Stöckli, J.-M. Bonard, A. Châtelain et al., Appl Phys. Lett. 80 (2002) 2982.CrossRefGoogle Scholar
  19. 19.
    M. F. Lin and K. W.-K. Shung, Phys. Rev. B 47 (1993) 6617.CrossRefGoogle Scholar
  20. 20.
    O. Sato, Y. Tanaka, and M. Kobayashi, Phys, Rev. B 48 (1993) 1947.CrossRefGoogle Scholar
  21. 21.
    P. S. Davids, L. Wang, A. Saxena et al., Phys. Rev. B 49 (1994) 5682.CrossRefGoogle Scholar
  22. 22.
    C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 50 (1994) 7977.CrossRefGoogle Scholar
  23. 23.
    P. S. Davids, L. Wang, A. Saxena et al., Phys. Rev. B 51 (1995) 4557.CrossRefGoogle Scholar
  24. 24.
    X. Jiang, Phys. Rev. B 54 (1996) 13487.CrossRefGoogle Scholar
  25. 25.
    M. F. Lin, D. S. Chuu, C. S. Huang et al., Phys. Rev. B 53 (1996) 15493.CrossRefGoogle Scholar
  26. 26.
    C. Yannouleas, E. N. Bogachek, and U. Landman, Phys. Rev. B 53 (1996) 10225.CrossRefGoogle Scholar
  27. 27.
    M. F. Lin, D. S. Chuu, and K. W.-K. Shung, Phys. Rev. B 56 (1997) 1430.CrossRefGoogle Scholar
  28. 28.
    B. Vasvári, Phys. Rev. B 55 (1997) 7993.CrossRefGoogle Scholar
  29. 29.
    T. Stöckli, J.-M. Bonard, A. Châtelain et al., Phys. Rev. B 64 (2001) 115424.CrossRefGoogle Scholar
  30. 30.
    F. Bloch, Z Phys. 81 (1933) 363.CrossRefGoogle Scholar
  31. 31.
    K. Suenaga, M. Tence, C. Mory et al., Science 290 (2000) 2280.CrossRefGoogle Scholar
  32. 32.
    N. Demoncy, O. Stéphan, N. Brun et al., European Phys. J. B 4 (1998) 147.CrossRefGoogle Scholar
  33. 33.
    C. Geurret-Piécourt, Y. Le Bouar, A. Loiseau et al., Nature 372 (1994) 761.CrossRefGoogle Scholar
  34. 34.
    O. Stéphan, P. M. Ajayan, C. Colliex et al., Phys. Rev. B 53 (1996) 13824.CrossRefGoogle Scholar
  35. 35.
    K. Suenaga, C. Colliex, and S. Iijima, Appl. Phys. Lett. 78 (2001) 70.CrossRefGoogle Scholar
  36. 36.
    K. Suenaga, E. Sandre, C. Colliex et al., Phys. Rev. B 63 (2001) 165408/1.CrossRefGoogle Scholar
  37. 37.
    D. Ugarte, Nature 359 (1992) 707.CrossRefGoogle Scholar
  38. 38.
    F. Banhart and P. M. Ajayan, Nature 382 (1996) 433.CrossRefGoogle Scholar
  39. 39.
    P. Redlich, F. Banhart, Y Lyutovich et al., Carbon 36 (1998) 561.CrossRefGoogle Scholar
  40. 40.
    T. Cabioc’h, J. P. Rivière, M. Jaouen et al., Synth. Met. 77 (1996) 253.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • T. Stöckli
    • 1
  1. 1.Centre Suisse d’Electronique et de Microtechnique (CSEM)AlpnachSwitzerland

Personalised recommendations