Advertisement

The Smallest Carbon Nanotubes

Chapter

Abstract

An ideal carbon nanotube can be constructed by rolling up a single sheet of graphite to make a seamless hollow cylinder. It can be thought of as a tubular nanocrystal of graphite. Different from bulk-quantity graphite material, however, carbon nanotubes have demonstrated remarkable electronic, optical, and mechanical properties sensitive to the diameter and helicity of the tube lattice. The tremendous recent interest in carbon nanotubes stems not only from their novel properties but also from their potential use in a variety of technological applications.

Keywords

Carbon Nanotubes HRTEM Image Carbon Film Simulated Image Graphite Sheet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Iijima, Nature 354 (1991) 56.CrossRefGoogle Scholar
  2. 2.
    J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, Nature 391 (1998) 59.CrossRefGoogle Scholar
  3. 3.
    S. Sawada and N. Hamada, Solid State Commun. 83 (1992) 917.CrossRefGoogle Scholar
  4. 4.
    L. M. Peng, Z. L. Zhang, Z. Q. Xue, Q. D. Wu, Z. N. Gu, and D. G. Pettifor, Phys. Rev. Lett. 85 (2000) 3249.CrossRefGoogle Scholar
  5. 5.
    T. W. Ebbesen and P. M. Ajayan, Nature 358 (1992) 220.CrossRefGoogle Scholar
  6. 6.
    A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, D. T. Colbert, G. Scuseria, D. Tomanek, J. E. Fisher, and R. E. Smalley, Science 273 (1996) 483.CrossRefGoogle Scholar
  7. 7.
    L. C. Qin and S. Iijima, Mater. Lett. 30 (1997) 311.CrossRefGoogle Scholar
  8. 8.
    J. Kong, H. T. Soh, A. M. Cassell, C. F. Quate, and H. J. Dai, Nature 395 (1998) 878.CrossRefGoogle Scholar
  9. 9.
    R. V. Parthasarathy, K. L. N. Phani, and C. R. Martin, Adv. Mater. 7 (1998) 896.CrossRefGoogle Scholar
  10. 10.
    B. D. Yao and N. Wang, J. Phys. Chem. B105 (2001) 11395.Google Scholar
  11. 11.
    X. Blau, I. X. Benedict, E. I. Shirley, and S. G. Louie, Phys. Rev. Lett. 72 (1994) 1878.CrossRefGoogle Scholar
  12. 12.
    S. Frank, P. Poncharal, Z. L. Wang, and W A. de Heer, Science 280 (1998) 1744.CrossRefGoogle Scholar
  13. 13.
    P. M. Ajayan and S. Iijima, Nature 358 (1992) 23.CrossRefGoogle Scholar
  14. 14.
    C. Piskoti, J. Yarger, and A. Zettl, Nature 393 (1998) 771.CrossRefGoogle Scholar
  15. 15.
    H. Prinzbach, A. Weller, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont, D. Olevano, and B. von Issendorff, Nature 407 (2000) 60.CrossRefGoogle Scholar
  16. 16.
    M. Kociak, A. Yu. Kasumov, S. Guéron, B. Reulet, I. I. Khodos, Yu. B. Gorbatov, V. T. Volkov, L. Vaccarini, and H. Bouchiat, Phys. Rev. Lett. 86 (2001) 2416.CrossRefGoogle Scholar
  17. 17.
    Z. K. Tang, L. Zhang, N. Wang, X. X. Zhang, G. H. Wen, G. D. Li, J. N. Wang, C. T. Chan, and P. Sheng, Science 292 (2001) 2462.CrossRefGoogle Scholar
  18. 18.
    Z. K. Tang, H. D. Sun, J. Wang, J. Chen, and G. Li, Appl. Phys. Lett. 73 (1998) 2287.CrossRefGoogle Scholar
  19. 19.
    R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, Chem. Phys. Lett. 209 (1993) 77.CrossRefGoogle Scholar
  20. 20.
    R. Saito, T. Takeya, T. Kimura, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B57 (1998) 4145.CrossRefGoogle Scholar
  21. 21.
    H. D. Sun, Z. K. Tang, J. Chen, and G. Li, Appl. Phys. A69 (1999) 381.CrossRefGoogle Scholar
  22. 22.
    P. Launois, R. Moret, D. Le Bolloc’h, P. A. Albouy, Z. K. Tang, G. Li, and J. Chen, Solid State Commun. 116 (2000) 99.CrossRefGoogle Scholar
  23. 23.
    N. Wang, C. D. Li, and Z. K. Tang, Chem. Phys. Lett. 339 (2001) 47.CrossRefGoogle Scholar
  24. 24.
    S. Wang and D. Zhou, Chem. Phys. Lett. 225 (1994) 165.CrossRefGoogle Scholar
  25. 25.
    L. C. Qin, X. Zhao, K. Hirahara, Y Ando, and S. Iijima, Chem. Phys. Lett. 349 (2001) 389.CrossRefGoogle Scholar
  26. 26.
    H. Y Peng, N. Wang, Y F. Zheng, Y Lifshitz, J. Kulik, R. Q. Zhang, C. S. Lee, and S. T. Lee, Appl Phys. Lett. 77 (2000) 2831.CrossRefGoogle Scholar
  27. 27.
    L. C. Qin, X. Zhao, K. Hirahara, Y Miyamoto, Y Ando, and S. Iijima, Nature 408 (2000) 50.CrossRefGoogle Scholar
  28. 28.
    S. G. Louie, in Carbon Nanotubes, Synthesis, Structure, Properties, and Applications, M. S. Dresselhaus, G. Dresselhaus, and P. Avouris (Eds.) (New York: Springer, 2001), pp. 113–145.Google Scholar
  29. 29.
    Z. K. Tang, H. D. Sun, and J. N. Wang, in Physics and Chemistry of Nanostructured Materials, S. Yang and P. Sheng (Eds.) (London: Taylor and Francis, 2000), pp. 112–120.Google Scholar
  30. 30.
    H. Ajiki and T. Ando, Physica 201B (1994) 349.CrossRefGoogle Scholar
  31. 31.
    A. J. Bullen, K. E. O’Hara, and D. G. Cahill, J. Appl. Phys. 88 (2000) 6317.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • N. Wang
    • 1
  1. 1.Hong Kong University of Science and TechnologyHong KongChina

Personalised recommendations