Integral Atomic Layer Architectures of 1D Crystals Inserted into Single-Walled Carbon Nanotubes

  • J. Sloan
  • A. I. Kirkland
  • J. L. Hutchison
  • M. L. H. Green
Chapter

Abstract

In his famous 1959 address “There’s Plenty of Room at the Bottom” [1], Richard Feynman stated: “What could we do with layered structures with just the right layers? What would the properties of materials be if we could really arrange the atoms the way we want them? They would be very interesting to investigate theoretically. I can’t see exactly what would happen, but I can hardly doubt that when we have some control of the arrangement of things on a small scale we will get an enormously greater range of possible properties that substances can have, and of different things that we can do.” Although advances in materials fabrication technology since 1959 have made it possible to manipulate the formation of matter on an atomic scale, there are relatively few methodologies for the production of discrete atomically regulated or Feynman-type solids on a large (i.e., bulk) scale. To date, some of the most successful strategies have involved either local atomically regulated deposition of materials on solid surfaces (as in, e.g., the formation of quantum dot type structures [2]) or, alternatively, manipulation of discrete molecules and atoms via atomic force or scanning tunneling microscopy (AFM or STM) [3, 4, 5, 6, 7, 8, 9].

Keywords

Dark Spot Electron Energy Loss Spectroscopy Fullerene Molecule Atom Column Electron Energy Loss Spectroscopy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. P. Feynman, Engin. Science 23 (1960) 22.Google Scholar
  2. 2.
    D. Bimberg, M. Grundmann, and N. N. Ledentsov (Eds.), Quantum Dot Heterostructures (London: Wiley, 1999).Google Scholar
  3. 3.
    R. M. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.-J. Guntherodt, M. Fujihira, H. Takano, and Y. Gotoh, Nature 359 (1992) 133.CrossRefGoogle Scholar
  4. 4.
    A. Noy, C. D. Frisbie, L. F. Rozsnyai, M. S. Wrighton, and C. M. Lieber, J. Am. Chem. Soc. 117(1995)7943.CrossRefGoogle Scholar
  5. 5.
    S. K. Sinniah, A. B. Steel, C. J. Miller, and J. E. Reutt-Robey, J. Am. Chem. Soc. 118 (1996) 8925.CrossRefGoogle Scholar
  6. 6.
    R. McKendry, M. E. Theoclitou, T. Rayment, and C. Abell, Nature 391 (1998) 566.CrossRefGoogle Scholar
  7. 7.
    S.-T. Yau, B. R. Thomas, and P. G. Vekilov, Phys. Rev. Lett. 85 (2000) 353.CrossRefGoogle Scholar
  8. 8.
    K. Tsuchie, T. Nagao, and S. Hasegawa, Phys. Rev. B 60 (1999) 11131.CrossRefGoogle Scholar
  9. 9.
    T. W. Fishlock, A. Oral, R. G. Egdell, and J. B. Pethica, Nature 404 (2000) 743.CrossRefGoogle Scholar
  10. 10.
    R. M. Barrer, J. W. Baynham, F. W. Bultitude, and W. M. Meier, J. Chem. Soc. (1959) 195.Google Scholar
  11. 11.
    M. T. Weller, J. Chem. Soc, Dalton Trans. (2000) 4227 and references therein.Google Scholar
  12. 12.
    C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature 359 (1992)710.CrossRefGoogle Scholar
  13. 13.
    B. J. Scott, G. Wirnsberger, and G. D. Stucky, Chem. Mater. 13 (2001) 3140.CrossRefGoogle Scholar
  14. 14.
    W. M. Meier, D. H. Olson, and C. Baerlocher, Atlas of Zeolite Structure Types (4th ed.) (Amsterdam: Elsevier, 1996).Google Scholar
  15. 15.
    W. Zhou, J. M. Thomas, D. S. Shephard, B. F G. Johnson, T. Maschmeyer, R. G. Bell, and Q. Ge, Science 280 (1998) 705.CrossRefGoogle Scholar
  16. 16.
    Z. Zhang, D. Gekhtman, M. S. Dresselhaus, and J. Ying, Chem. Mater. 11 (1999) 1659.CrossRefGoogle Scholar
  17. 17.
    B. H. Hong, S. C. Bae, C.-W. Lee, S. Jeong, and K. S. Kim, Science 294 (2001) 348.CrossRefGoogle Scholar
  18. 18.
    H. Ohnishi, Y. Kondo, and K. Takayanagi, Nature 395 (1998) 780.CrossRefGoogle Scholar
  19. 19.
    J. Sloan, A. I. Kirkland, J. L. Hutchison, and M. L. H. Green, J. Chem. Soc, Chem. Commun. (2002) 1319.Google Scholar
  20. 20.
    S. Iijima and T. Ichihashi, Nature 363 (1993) 603.CrossRefGoogle Scholar
  21. 21.
    D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyers, Nature 363 (1993) 605.CrossRefGoogle Scholar
  22. 22.
    P. M. Ajayan, J. M. Lambert, P. Bernier, L. Barbedette, C. Colliex, and J. M. Planeix, Chem. Phys. Lett. 215 (1993) 509.CrossRefGoogle Scholar
  23. 23.
    T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, and R. E. Smalley, Chem. Phys. Lett. 243 (1995) 49.CrossRefGoogle Scholar
  24. 24.
    P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T. Colbert, K. A. Smith, and R. E. Smalley, Chem. Phys. Lett. 313 (1999) 91.CrossRefGoogle Scholar
  25. 25.
    J. Sloan, M. C. Novotny, S. R. Bailey, G. Brown, C. Xu, V. C. Williams, S. Friedrichs, E. Flahaut, R. L. Callendar, A. P. E. York, K. S. Coleman, M. L. H. Green, R. E. Dunin-Borkowski, and J. L. Hutchison, Chem. Phys. Lett. 329 (2000) 61.CrossRefGoogle Scholar
  26. 26.
    R. R. Meyer, J. Sloan, R. E. Dunin-Borkowski, A. I. Kirkland, M. C. Novotny, S. R. Bailey, J. L. Hutchison, and M. L. H. Green, Science 289 (2000) 1324.CrossRefGoogle Scholar
  27. 27.
    J. Sloan and M. L. H. Green in Fullerenes: Chemistry, Physics and Technology, K. M. Kadish and R. S. Ruoff (Eds.) (New York: Wiley Interscience, 2000), p. 795.Google Scholar
  28. 28.
    C. Xu, J. Sloan, G. Brown, S. R. Bailey, V. C. Williams, S. Friedrichs, K. S. Coleman, E. Flahaut, J. L. Hutchison, R. E. Dunin-Borkowski, and M. L. H. Green, J. Chem. Soc, Chem. Commun. (2000) 2427.Google Scholar
  29. 29.
    J. Sloan, S. Grosvenor, S. R. Friedrichs, A. I. Kirkland, J. L. Hutchison, and M. L. H. Green, Angew. Chem. 114 (2002) 1204.CrossRefGoogle Scholar
  30. 30.
    J. Sloan, J. Hammer, M. Zweifka-Sibley, and M. L. H. Green, J. Chem. Soc, Chem. Commun. (1998) 347.Google Scholar
  31. 31.
    S. C. Tsang, P. J. F. Harris, and M. L. H. Green, Nature 362 (1993) 520.CrossRefGoogle Scholar
  32. 32.
    S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, Nature 372 (1994) 159.CrossRefGoogle Scholar
  33. 33.
    P. M. Ajayan and S. Iijima, Nature 361 (1993) 6410.CrossRefGoogle Scholar
  34. 34.
    P. M. Ajayan, O. Stephan, P. Redlich, and C. Colliex, Nature 375 (1995) 564.CrossRefGoogle Scholar
  35. 35.
    J. Sloan, D. M. Wright, H. G. Woo, S. Bailey, G. Brown, A. P. E. York, K. S. Coleman, J. L. Hutchison, and M. L. H. Green, J. Chem. Soc, Chem. Commun. (1999) 699.Google Scholar
  36. 36.
    T. W Ebbesen, J. Phys. Chem. Solids 57 (1996) 951.CrossRefGoogle Scholar
  37. 37.
    C. H. Kiang, J.-S. Choi, T. T. Tran, and A. D. Bacher, J. Phys. Chem. B 103 (1999) 7449.CrossRefGoogle Scholar
  38. 38.
    G. Brown, S. R. Bailey, J. Sloan, C. Xu, S. Friedrichs, E. Flahaut, K. S. Coleman, M. L. H. Green, J. L. Hutchison, and R. E. Dunin-Borkowski, J. Chem. Soc, Chem. Commun. (2001) 845.Google Scholar
  39. 39.
    J. Mittal, M. Monthioux, H. Allouche, and O. Stephan, Chem. Phys. Lett 339 (2001) 311.CrossRefGoogle Scholar
  40. 40.
    S. Friedrichs, R. R. Meyer, J. Sloan, A. I. Kirkland, J. L. Hutchison, and Malcolm L. H. Green, J. Chem. Soc, Chem. Commun. (2001) 929.Google Scholar
  41. 41.
    S. Friedrichs, J. Sloan, M. L. H. Green, J. L. Hutchison, R. R. Meyer, and A. I. Kirkland, Phys. Rev. B 64 (2001) 045406/1.Google Scholar
  42. 42.
    X. Fan, E. C. Dickey, P. C. Eklund, K. A. Williams, L. Grigorian, R. Buczko, S. T. Pantelides, and S. J. Pennycook, Phys. Rev. Lett. 84 (2000) 4621.CrossRefGoogle Scholar
  43. 43.
    B. W Smith, M. Monthioux, and D. E. Luzzi, Nature 396 (1998) 323.CrossRefGoogle Scholar
  44. 44.
    J. Sloan, R. E. Dunin-Borkowski, J. L. Hutchison, K. S. Coleman, V. C. Williams, J. B. Claridge, A. P. E. York, C. Xu, S. R. Bailey, G. Brown, S. Friedrichs, and M. L. H. Green, Chem. Phys. Lett. 316 (2000) 191.CrossRefGoogle Scholar
  45. 45.
    Y Zhang, S. Iijima, Z. Shi, and Z. Gu, Phil. Mag. Lett. 79 (1999) 473CrossRefGoogle Scholar
  46. 46.
    B. W Smith, D. E. Luzzi, and Y Achiba, Chem. Phys. Lett. 331 (2000) 137.CrossRefGoogle Scholar
  47. 47.
    D. A. Morgan, J. Sloan, and M. L. H. Green, Chem. Commun. (2002) 2442.Google Scholar
  48. 48.
    J. Sloan, M. Terrones, S. Nufer, S. Friedrichs, S. R. Bailey, H. G. Woo, M. Ruhle, J. L. Hutchison, and M. L. H. Green, J. Am. Chem. Soc 124 (2002) 2116.CrossRefGoogle Scholar
  49. 49.
    J. Sloan, J. Cook, A. Chu, M. Zwiefka-Sibley, M. L. H. Green, and J. L. Hutchison, J. Solid State Chem. 140 (1998) 83.CrossRefGoogle Scholar
  50. 50.
    B. W. Smith and D. E. Luzzi, Chem. Phys. Lett. 321 (2000) 169.CrossRefGoogle Scholar
  51. 51.
    K. Hirahara, K. Suenaga, S. Bandow, H. Kato, T. Okazaki, H. Shinohara, and S. Iijima, Phys. Rev. Lett. 85 (2000) 5384.CrossRefGoogle Scholar
  52. 52.
    K. Hirahara, S. Bandow, K. Suenaga, H. Kato, T. Okazaki, H. Shinohara, and S. Iijima, Phys. Rev. B 64 (2001) 115420/1.Google Scholar
  53. 53.
    A. F. Wells, Structural Inorganic Chemistry (5th ed.) (Oxford: Oxford University Press, 1990), p. 409.Google Scholar
  54. 54.
    J. Sloan, G. Brown, S. R. Bailey, K. S. Coleman, E. Flahaut, S. Friedrichs, C. Xu, M. L. H. Green, R. E. Dunin-Borkowski, J. L. Hutchison, and A. I. Kirkland, in Proceedings of the Fall 2000 MRS, 2000, A14.31.Google Scholar
  55. 55.
    J. Sloan, S. Friedrichs, R. R. Meyer, A. I. Kirkland, J. L. Hutchison, and M. L. H. Green, Inorg. Chim. Acta 330 (2002) 1.CrossRefGoogle Scholar
  56. 56.
    R. R. Meyer, A. I. Kirkland, and W. O. Saxton, Ultramicroscopy 92 (2002) 89.CrossRefGoogle Scholar
  57. 57.
    M. Wilson and P. A. Madden, J. Am. Chem. Soc. 123 (2001) 2101.CrossRefGoogle Scholar
  58. 58.
    The conformation and diameter of a SWNT are effectively specified by (n, m), where n and m are integers in the equation \( {C_h} = n{a_1} + m{a_2} \), where C h is the “roll-up” vector of the nanotube and a 1 and a 2 are the basal vectors of the parent sp2 graphene lattice. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, Carbon 33 (1995) 883.CrossRefGoogle Scholar
  59. 59.
    J. L. Hutchison, R. C. Doole, R. E. Dunin-Borkowski, J. Sloan, and M. L. H. Green, JEOL News 34E (1999) 10.Google Scholar
  60. 60.
    K. F. Mucker, G. S. Smith, Q. Johnson, R. E. Elson, Acta Cryst. B25 (1969) 2362.CrossRefGoogle Scholar
  61. 61.
    E. B. Brackett and T. E. Brackett, J. Phys. Chem. 67 (1963) 2132.CrossRefGoogle Scholar
  62. 62.
    H. P. Beck, J. Solid State Chem. 47 (1983) 328.CrossRefGoogle Scholar
  63. 63.
    J. M. Léger, J. Haines, and A. Atouf, J. Appl. Cryst. 28 (1995) 416.CrossRefGoogle Scholar
  64. 64.
    F. Banhart, Rep. Progr. Phys. 62 (1999) 1181.CrossRefGoogle Scholar
  65. 65.
    B. W. Smith and D. E. Luzzi, J. Appl. Phys. 90 (2001) 3509CrossRefGoogle Scholar
  66. 66.
    C. R. A. Catlow, K. M. Diller, and L. W Hobbs, Phil. Mag. A 42 (1980) 123.CrossRefGoogle Scholar
  67. 67.
    M. L. Jenkins and M. A. Kirk, Characterisation of Radiation Damage by Transmission Electron Microscopy (Bristol: Institute of Physics, 2000), p. 173.CrossRefGoogle Scholar
  68. 68.
    G. C. Fryburg and R. A. Lad, Surf. Sci. 48 (1975) 353.CrossRefGoogle Scholar
  69. 69.
    B. Krebs, Angew. Chem. 81 (1969) 120.CrossRefGoogle Scholar
  70. 70.
    T. Okazaki, K. Suenaga, H. Kazutomo, S. Bandow, S. Iijima, and H. Shinohara, J. Am. Chem. Soc. 123 (2001) 9673.CrossRefGoogle Scholar
  71. 71.
    E. Philp, J. Sloan, S. Friedrichs, A. I. Kirkland, R. Meyer, J. L. Hutchison, and M. L. H, Green, unpublished results.Google Scholar
  72. 72.
    H. W Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, and R. E. Smalley, Nature 318 (1985) 162.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • J. Sloan
    • 1
  • A. I. Kirkland
    • 1
  • J. L. Hutchison
    • 1
  • M. L. H. Green
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations